Despite its global impact on ecosystems, the Triassic/Jurassic boundary event had only a modest effect on the carbonate depositional systems of the Southern Alps, whereas a fundamental reorganization of the same palaeogeographic area took place during the Sinemurian Age. This paper investigates whether or not the well-documented demise of Sinemurian carbonate platforms in the Tethyan region was a response to a global event by examination of carbon-isotope anomalies in successions of different facies that record this interval of time. A chemostratigraphic transect from Lake Garda up to the eastern Italian border is illustrated by four stratigraphic sections; high-resolution (20 cm over key intervals) chemostratigraphic sampling allowed detection of a major negative δ13C anomaly of ~ 1.5‰, preceded by a positive excursion, both in shallow- and deep-water successions, over the stratigraphical range of the ammonite genus Arnioceras. A comparison with sections from the UK suggests that the positive excursion belongs to the turneri Zone and the succeeding negative excursion falls within the obtusum Zone. In the deep-water Belluno Basin, the negative anomaly occurs in a biogenic chert-rich unit recording the onset of mesotrophic conditions in the basin. In the platform-carbonate successions, this major negative carbon-isotope excursion is developed within a calcarenitic unit corresponding to the lowest occurrence of the foraminifer Paleomayncina termieri. This evidence for deepening and transgression across the carbonate platform suggests pre-conditioning for drowning. Hence, rather than tectonic subsidence alone, environmental factors may have aided the demise of Tethyan carbonate platforms during the Early Jurassic Sinemurian Age.
Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: evidence from the Southern Alps (Northern Italy)
MASETTI, Daniele
Primo
;POSENATO, RenatoUltimo
2017
Abstract
Despite its global impact on ecosystems, the Triassic/Jurassic boundary event had only a modest effect on the carbonate depositional systems of the Southern Alps, whereas a fundamental reorganization of the same palaeogeographic area took place during the Sinemurian Age. This paper investigates whether or not the well-documented demise of Sinemurian carbonate platforms in the Tethyan region was a response to a global event by examination of carbon-isotope anomalies in successions of different facies that record this interval of time. A chemostratigraphic transect from Lake Garda up to the eastern Italian border is illustrated by four stratigraphic sections; high-resolution (20 cm over key intervals) chemostratigraphic sampling allowed detection of a major negative δ13C anomaly of ~ 1.5‰, preceded by a positive excursion, both in shallow- and deep-water successions, over the stratigraphical range of the ammonite genus Arnioceras. A comparison with sections from the UK suggests that the positive excursion belongs to the turneri Zone and the succeeding negative excursion falls within the obtusum Zone. In the deep-water Belluno Basin, the negative anomaly occurs in a biogenic chert-rich unit recording the onset of mesotrophic conditions in the basin. In the platform-carbonate successions, this major negative carbon-isotope excursion is developed within a calcarenitic unit corresponding to the lowest occurrence of the foraminifer Paleomayncina termieri. This evidence for deepening and transgression across the carbonate platform suggests pre-conditioning for drowning. Hence, rather than tectonic subsidence alone, environmental factors may have aided the demise of Tethyan carbonate platforms during the Early Jurassic Sinemurian Age.File | Dimensione | Formato | |
---|---|---|---|
Masetti et al. 2017 Geol Mag.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
E Masetti et al.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
2.18 MB
Formato
Adobe PDF
|
2.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.