In this work we are interested in the mean-field formulation of kinetic models under control actions where the control is formulated through a model predictive control strategy (MPC) with varying horizon. The relation between the (usually hard to compute) optimal control and the MPC approach is investigated theoretically in the mean-field limit. We establish a computable and provable bound on the difference in the cost functional for MPC controlled and optimal controlled system dynamics in the mean-field limit. The result of the present work extends previous findings for systems of ordinary differential equations. Numerical results in the mean-field setting are given.

Performance bounds for the mean-field limit of constrained dynamics

ZANELLA, Mattia
2017

Abstract

In this work we are interested in the mean-field formulation of kinetic models under control actions where the control is formulated through a model predictive control strategy (MPC) with varying horizon. The relation between the (usually hard to compute) optimal control and the MPC approach is investigated theoretically in the mean-field limit. We establish a computable and provable bound on the difference in the cost functional for MPC controlled and optimal controlled system dynamics in the mean-field limit. The result of the present work extends previous findings for systems of ordinary differential equations. Numerical results in the mean-field setting are given.
2017
Herty, Michael; Zanella, Mattia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2359989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact