We prove that the steady state Navier–Stokes equations have a solution in an exterior Lipschitz domain of (Formula presented.), vanishing at infinity, provided the boundary datum belongs to (Formula presented.).
Data di pubblicazione: | 2018 | |
Titolo: | An existence and uniqueness theorem for the Navier–Stokes equations in dimension four | |
Autori: | Coscia, Vincenzo | |
Rivista: | APPLICABLE ANALYSIS | |
Keywords: | Stationary Navier Stokes equations; 4D exterior Lipschitz domains; boundary–value problem; Analysis; Applied Mathematics | |
Abstract in inglese: | We prove that the steady state Navier–Stokes equations have a solution in an exterior Lipschitz domain of (Formula presented.), vanishing at infinity, provided the boundary datum belongs to (Formula presented.). | |
Digital Object Identifier (DOI): | 10.1080/00036811.2016.1263837 | |
Handle: | http://hdl.handle.net/11392/2359714 | |
Appare nelle tipologie: | 03.1 Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Coscia V., An existence and uniqueness theorem for the Navier Stokes equations in dimension four, Appl. Anal. 2016, in press.pdf | Post-print | PUBBLICO - Pubblico con Copyright | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.