Although quinones present a large array of biological activities, a few studies on the herbicidal potential of 2,5-bis(alkyl/arylamino)-1,4-benzoquinones have been reported to date. In this work, starting from benzoquinone, 13 2,5-bis(alkyl/arylamino)-1,4-benzoquinones were prepared in 46 – 93% yield. The products were fully characterized by spectroscopic analyses and their phytotoxicity against Cucumis sativus and Sorghum bicolor seedlings was investigated. At 100 ppm, compounds caused 10 – 88% growth inhibition of the dicotyledonous species, whereas the monocotyledon was less affected. Most compounds exerted little inhibitory effect on a cyanobacterial model strain. However, at 100 μm, compounds 8 – 10 caused about 50% inhibition of algal growth, and compounds 1 and 2 reduced cell viability in the 1 – 10 μm range. The ability of benzoquinone derivatives to interfere with the light-driven ferricyanide reduction by isolated spinach chloroplasts was evaluated. Some substances showed a moderate effect as uncouplers, but no relationship was found between this property and their biological activity, indicating that the herbicidal effect is not associated with the inhibition of the photosynthetic electron transport chain. Phytotoxic compounds were not toxic to insects, strengthening the possibility that they may serve as lead for the development of eco-friendly herbicides.

Amino-substituted para-Benzoquinones as Potential Herbicides

GIBERTI, Samuele;FORLANI, Giuseppe
2016

Abstract

Although quinones present a large array of biological activities, a few studies on the herbicidal potential of 2,5-bis(alkyl/arylamino)-1,4-benzoquinones have been reported to date. In this work, starting from benzoquinone, 13 2,5-bis(alkyl/arylamino)-1,4-benzoquinones were prepared in 46 – 93% yield. The products were fully characterized by spectroscopic analyses and their phytotoxicity against Cucumis sativus and Sorghum bicolor seedlings was investigated. At 100 ppm, compounds caused 10 – 88% growth inhibition of the dicotyledonous species, whereas the monocotyledon was less affected. Most compounds exerted little inhibitory effect on a cyanobacterial model strain. However, at 100 μm, compounds 8 – 10 caused about 50% inhibition of algal growth, and compounds 1 and 2 reduced cell viability in the 1 – 10 μm range. The ability of benzoquinone derivatives to interfere with the light-driven ferricyanide reduction by isolated spinach chloroplasts was evaluated. Some substances showed a moderate effect as uncouplers, but no relationship was found between this property and their biological activity, indicating that the herbicidal effect is not associated with the inhibition of the photosynthetic electron transport chain. Phytotoxic compounds were not toxic to insects, strengthening the possibility that they may serve as lead for the development of eco-friendly herbicides.
2016
Nain Perez, Amalyn; Barbosa, Luiz C. A.; Picanço, Marcelo C.; Giberti, Samuele; Forlani, Giuseppe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2359092
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact