This paper begins with the statistics of the decimal digits of n/d with (n,d)∈N 2 randomly chosen. Starting with a statement by Cesàro on probabilistic number theory, see Cesàro (1885) [3,4], we evaluate, through the Euler ψ function, an integral appearing there. Furthermore the probabilistic statement itself is proved, using a different approach: in any case the probability of a given digit r to be the first decimal digit after dividing a couple of random integers is, The theorem is then generalized to real numbers (Theorem1, holding a proof of both nd results) and to the αth power of the ratio of integers (Theorem2), via an elementary approach involving the ψ function and the Hurwitz ζ function. The article provides historic remarks, numerical examples, and original theoretical contributions: also it complements the recent renewed interest in Benford's law among number theorists. © 2012 Elsevier Ltd.

Probability of digits by dividing random numbers: A ψ and ζ functions approach

GAMBINI, Alessandro;RITELLI, Daniele
2012

Abstract

This paper begins with the statistics of the decimal digits of n/d with (n,d)∈N 2 randomly chosen. Starting with a statement by Cesàro on probabilistic number theory, see Cesàro (1885) [3,4], we evaluate, through the Euler ψ function, an integral appearing there. Furthermore the probabilistic statement itself is proved, using a different approach: in any case the probability of a given digit r to be the first decimal digit after dividing a couple of random integers is, The theorem is then generalized to real numbers (Theorem1, holding a proof of both nd results) and to the αth power of the ratio of integers (Theorem2), via an elementary approach involving the ψ function and the Hurwitz ζ function. The article provides historic remarks, numerical examples, and original theoretical contributions: also it complements the recent renewed interest in Benford's law among number theorists. © 2012 Elsevier Ltd.
Gambini, Alessandro; Mingari Scarpello, Giovanni; Ritelli, Daniele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11392/2358945
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact