By virtue of Γ-convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p-Laplacian operator, in the singular limit as the nonlocal operator converges to the p-Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.
Data di pubblicazione: | 2016 | |
Titolo: | Stability of variational eigenvalues for the fractional p-Laplacian | |
Autori: | Brasco, Lorenzo; Parini, Enea; Squassina, Marco | |
Rivista: | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS | |
Keywords: | Critical points; Fractional p-Laplacian; Nonlocal eigenvalue problems; Γ-convergence; | |
Abstract in inglese: | By virtue of Γ-convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p-Laplacian operator, in the singular limit as the nonlocal operator converges to the p-Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm. | |
Digital Object Identifier (DOI): | 10.3934/dcds.2016.36.1813 | |
Handle: | http://hdl.handle.net/11392/2357712 | |
Appare nelle tipologie: | 03.1 Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
braparsqu_rev.pdf | Pre print | Pre-print | PUBBLICO - Pubblico con Copyright | Open Access Visualizza/Apri |
braparsqu_DCDS.pdf | Full text editoriale | Full text (versione editoriale) | NON PUBBLICO - Accesso privato/ristretto | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.