We consider the eigenvalue problem for the fractional p-Laplacian in an open bounded, possibly disconnected set ω ⊂ Rn, under homogeneous Dirichlet boundary conditions. After discussing some regularity issues for eigenfunctions, we show that the second eigenvalue λ2(ω) is well-defined, and we characterize it by means of several equivalent variational formulations. In particular, we extend the mountain pass characterization of Cuesta, De Figueiredo and Gossez to the nonlocal and nonlinear setting. Finally, we consider the minimization problem. Infλ(ω)=c We prove that, differently from the local case, an optimal shape does not exist, even among disconnected sets. A minimizing sequence is given by the union of two disjoint balls of volume c/2 whose mutual distance tends to infinity.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | The second eigenvalue of the fractional p-Laplacian |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Handle: | http://hdl.handle.net/11392/2357700 |
Appare nelle tipologie: | 03.1 Articolo su rivista |