Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
SFERA Archivio dei prodotti della Ricerca dell'Università di Ferrara
The two fundamental assumptions of the standard cosmological model-that the initial fluctuations are statistically isotropic and Gaussian-are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. The detailed results are based on studies of four independent estimates of the CMB that are compared to simulations using a fiducial ΛCDM model and incorporating essential aspects of the Planck measurement process. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice, and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3σ). However, we find little evidence of non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance in the CMB signal. A power asymmetry is now found to persist on scales corresponding to about â.," = 600 and can be described in the low-â.," regime by a phenomenological dipole modulation model. However, any primordial power asymmetry is strongly scale-dependent and does not extend to arbitrarily small angular scales. Finally, it is plausible that some of these features may be reflected in the angular power spectrum of the data, which shows a deficit of power on similar scales. Indeed, when the power spectra of two hemispheres defined by a preferred direction are considered separately, one shows evidence of a deficit in power, while its opposite contains oscillations between odd and even modes that may be related to the parity violation and phase correlations also detected in the data. Although these analyses represent a step forward in building an understanding of the anomalies, a satisfactory explanation based on physically motivated models is still lacking.
Planck 2013 results. XXIII. Isotropy and statistics of the CMB
Ade, P. A. R.;Aghanim, N.;Armitage-Caplan, C.;Arnaud, M.;Ashdown, M.;Atrio-Barandela, F.;Aumont, J.;Baccigalupi, C.;Banday, A. J.;Barreiro, R. B.;Bartlett, J. G.;Bartolo, N.;Battaner, E.;Battye, R.;Benabed, K.;Benoît, A.;Benoit-Lévy, A.;Bernard, J. -P.;Bersanelli, M.;Bielewicz, P.;Bobin, J.;Bock, J. J.;Bonaldi, A.;Bonavera, L.;Bond, J. R.;Borrill, J.;Bouchet, F. R.;Bridges, M.;Bucher, M.;Burigana, C.;Butler, R. C.;Cardoso, J. -F.;Catalano, A.;Challinor, A.;Chamballu, A.;Chary, R. -R.;Chiang, H. C.;Chiang, L. -Y.;Christensen, P. R.;Church, S.;Clements, D. L.;Colombi, S.;Colombo, L. P. L.;Couchot, F.;Coulais, A.;Crill, B. P.;Cruz, M.;Curto, A.;Cuttaia, F.;Danese, L.;Davies, R. D.;Davis, R. J.;De Bernardis, P.;De Rosa, A.;De Zotti, G.;Delabrouille, J.;Delouis, J. -M.;Désert, F. -X.;Diego, J. M.;Dole, H.;Donzelli, S.;Doré, O.;Douspis, M.;Ducout, A.;Dupac, X.;Efstathiou, G.;Elsner, F.;Enßlin, T. A.;Eriksen, H. K.;Fantaye, Y.;Fergusson, J.;Finelli, F.;Forni, O.;Frailis, M.;Franceschi, E.;Frommert, M.;Galeotta, S.;Ganga, K.;Giard, M.;Giardino, G.;Giraud-Héraud, Y.;González-Nuevo, J.;Górski, K. M.;Gratton, S.;Gregorio, A.;Gruppuso, A.;Hansen, F. K.;Hansen, M.;Hanson, D.;Harrison, D. L.;Helou, G.;Henrot-Versillé, S.;Hernández-Monteagudo, C.;Herranz, D.;Hildebrandt, S. R.;Hivon, E.;Hobson, M.;Holmes, W. A.;Hornstrup, A.;Hovest, W.;Huffenberger, K. M.;Jaffe, A. H.;Jaffe, T. R.;Jones, W. C.;Juvela, M.;Keihänen, E.;Keskitalo, R.;Kim, J.;Kisner, T. S.;Knoche, J.;Knox, L.;Kunz, M.;Kurki-Suonio, H.;Lagache, G.;Lähteenmäki, A.;Lamarre, J. -M.;Lasenby, A.;Laureijs, R. J.;Lawrence, C. R.;Leahy, J. P.;Leonardi, R.;Leroy, C.;Lesgourgues, J.;Liguori, M.;Lilje, P. B.;Linden-Vørnle, M.;López-Caniego, M.;Lubin, P. M.;Maciás-Pérez, J. F.;Maffei, B.;Maino, D.;Mandolesi, N.;Mangilli, A.;Marinucci, D.;Maris, M.;Marshall, D. J.;Martin, P. G.;Martínez-González, E.;Masi, S.;Massardi, M.;Matarrese, S.;Matthai, F.;Mazzotta, P.;Mcewen, J. D.;Meinhold, P. R.;Melchiorri, A.;Mendes, L.;Mennella, A.;Migliaccio, M.;Mikkelsen, K.;Mitra, S.;Miville-Deschênes, M. -A.;Molinari, D.;Moneti, A.;Montier, L.;Morgante, G.;Mortlock, D.;Moss, A.;Munshi, D.;Murphy, J. A.;Naselsky, P.;Nati, F.;Natoli, P.;Netterfield, C. B.;Nørgaard-Nielsen, H. U.;Noviello, F.;Novikov, D.;Novikov, I.;Osborne, S.;Oxborrow, C. A.;Paci, F.;Pagano, L.;Pajot, F.;Paoletti, D.;Pasian, F.;Patanchon, G.;Peiris, H. V.;Perdereau, O.;Perotto, L.;Perrotta, F.;Piacentini, F.;Piat, M.;Pierpaoli, E.;Pietrobon, D.;Plaszczynski, S.;Pogosyan, D.;Pointecouteau, E.;Polenta, G.;Ponthieu, N.;Popa, L.;Poutanen, T.;Pratt, G. W.;Prézeau, G.;Prunet, S.;Puget, J. -L.;Rachen, J. P.;Racine, B.;Räth, C.;Rebolo, R.;Reinecke, M.;Remazeilles, M.;Renault, C.;Renzi, A.;Ricciardi, S.;Riller, T.;Ristorcelli, I.;Rocha, G.;Rosset, C.;Rotti, A.;Roudier, G.;Rubinõ-Martín, J. A.;Ruiz-Granados, B.;Rusholme, B.;Sandri, M.;Santos, D.;Savini, G.;Scott, D.;Seiffert, M. D.;Shellard, E. P. S.;Souradeep, T.;Spencer, L. D.;Starck, J. -L.;Stolyarov, V.;Stompor, R.;Sudiwala, R.;Sureau, F.;Sutter, P.;Sutton, D.;Suur-Uski, A. -S.;Sygnet, J. -F.;Tauber, J. A.;Tavagnacco, D.;Terenzi, L.;Toffolatti, L.;Tomasi, M.;Tristram, M.;Tucci, M.;Tuovinen, J.;Türler, M.;Valenziano, L.;Valiviita, J.;Van Tent, B.;Varis, J.;Vielva, P.;Villa, F.;Vittorio, N.;Wade, L. A.;Wandelt, B. D.;Wehus, I. K.;White, M.;Wilkinson, A.;Yvon, D.;Zacchei, A.;Zonca, A.
2014
Abstract
The two fundamental assumptions of the standard cosmological model-that the initial fluctuations are statistically isotropic and Gaussian-are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. The detailed results are based on studies of four independent estimates of the CMB that are compared to simulations using a fiducial ΛCDM model and incorporating essential aspects of the Planck measurement process. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice, and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3σ). However, we find little evidence of non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance in the CMB signal. A power asymmetry is now found to persist on scales corresponding to about â.," = 600 and can be described in the low-â.," regime by a phenomenological dipole modulation model. However, any primordial power asymmetry is strongly scale-dependent and does not extend to arbitrarily small angular scales. Finally, it is plausible that some of these features may be reflected in the angular power spectrum of the data, which shows a deficit of power on similar scales. Indeed, when the power spectra of two hemispheres defined by a preferred direction are considered separately, one shows evidence of a deficit in power, while its opposite contains oscillations between odd and even modes that may be related to the parity violation and phase correlations also detected in the data. Although these analyses represent a step forward in building an understanding of the anomalies, a satisfactory explanation based on physically motivated models is still lacking.
Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R...espandi
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2357582
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
279
486
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.