Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
SFERA Archivio dei prodotti della Ricerca dell'Università di Ferrara
Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to â.," = 2000. The parameter constraints on ΛCDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about β =-4 to-2. Considering both morphology and prior knowledge of the low frequencycomponents, the index map allows us to associate a steep spectral index (β<-3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz, a flat index of β>-2.3 with strong free-free emission, and intermediate values with synchrotron emission.
Planck 2013 results. XII. Diffuse component separation
Ade, P. A. R.;Aghanim, N.;Armitage-Caplan, C.;Arnaud, M.;Ashdown, M.;Atrio-Barandela, F.;Aumont, J.;Baccigalupi, C.;Banday, A. J.;Barreiro, R. B.;Bartlett, J. G.;Battaner, E.;Benabed, K.;Benoît, A.;Benoit-Lévy, A.;Bernard, J. -P.;Bersanelli, M.;Bielewicz, P.;Bobin, J.;Bock, J. J.;Bonaldi, A.;Bonavera, L.;Bond, J. R.;Borrill, J.;Bouchet, F. R.;Boulanger, F.;Bridges, M.;Bucher, M.;Burigana, C.;Butler, R. C.;Cardoso, J. -F.;Castex, G.;Catalano, A.;Challinor, A.;Chamballu, A.;Chary, R. -R.;Chen, X.;Chiang, H. C.;Chiang, L. -Y.;Christensen, P. R.;Church, S.;Clements, D. L.;Colombi, S.;Colombo, L. P. L.;Couchot, F.;Coulais, A.;Crill, B. P.;Cruz, M.;Curto, A.;Cuttaia, F.;Danese, L.;Davies, R. D.;Davis, R. J.;De Bernardis, P.;De Rosa, A.;De Zotti, G.;Delabrouille, J.;Delouis, J. -M.;Désert, F. -X.;Dickinson, C.;Diego, J. M.;Dobler, G.;Dole, H.;Donzelli, S.;Doré, O.;Douspis, M.;Dunkley, J.;Dupac, X.;Efstathiou, G.;Enßlin, T. A.;Eriksen, H. K.;Falgarone, E.;Finelli, F.;Forni, O.;Frailis, M.;Fraisse, A. A.;Franceschi, E.;Galeotta, S.;Ganga, K.;Giard, M.;Giardino, G.;Giraud-Héraud, Y.;González-Nuevo, J.;Górski, K. M.;Gratton, S.;Gregorio, A.;Gruppuso, A.;Hansen, F. K.;Hanson, D.;Harrison, D. L.;Helou, G.;Henrot-Versillé, S.;Hernández-Monteagudo, C.;Herranz, D.;Hildebrandt, S. R.;Hivon, E.;Hobson, M.;Holmes, W. A.;Hornstrup, A.;Hovest, W.;Huey, G.;Huffenberger, K. M.;Jaffe, A. H.;Jaffe, T. R.;Jewell, J.;Jones, W. C.;Juvela, M.;Keihänen, E.;Keskitalo, R.;Kisner, T. S.;Kneissl, R.;Knoche, J.;Knox, L.;Kunz, M.;Kurki-Suonio, H.;Lagache, G.;Lähteenmäki, A.;Lamarre, J. -M.;Lasenby, A.;Laureijs, R. J.;Lawrence, C. R.;Le Jeune, M.;Leach, S.;Leahy, J. P.;Leonardi, R.;Lesgourgues, J.;Liguori, M.;Lilje, P. B.;Linden-Vørnle, M.;López-Caniego, M.;Lubin, P. M.;Maciás-Pérez, J. F.;Maffei, B.;Maino, D.;Mandolesi, N.;Marcos-Caballero, A.;Maris, M.;Marshall, D. J.;Martin, P. G.;Martínez-González, E.;Masi, S.;Massardi, M.;Matarrese, S.;Matthai, F.;Mazzotta, P.;Meinhold, P. R.;Melchiorri, A.;Mendes, L.;Mennella, A.;Migliaccio, M.;Mikkelsen, K.;Mitra, S.;Miville-Deschênes, M. -A.;Molinari, D.;Moneti, A.;Montier, L.;Morgante, G.;Mortlock, D.;Moss, A.;Munshi, D.;Murphy, J. A.;Naselsky, P.;Nati, F.;Natoli, P.;Netterfield, C. B.;Nørgaard-Nielsen, H. U.;Noviello, F.;Novikov, D.;Novikov, I.;O'Dwyer, I. J.;Osborne, S.;Oxborrow, C. A.;Paci, F.;Pagano, L.;Pajot, F.;Paladini, R.;Paoletti, D.;Partridge, B.;Pasian, F.;Patanchon, G.;Pearson, T. J.;Perdereau, O.;Perotto, L.;Perrotta, F.;Pettorino, V.;Piacentini, F.;Piat, M.;Pierpaoli, E.;Pietrobon, D.;Plaszczynski, S.;Platania, P.;Pointecouteau, E.;Polenta, G.;Ponthieu, N.;Popa, L.;Poutanen, T.;Pratt, G. W.;Prézeau, G.;Prunet, S.;Puget, J. -L.;Rachen, J. P.;Reach, W. T.;Rebolo, R.;Reinecke, M.;Remazeilles, M.;Renault, C.;Renzi, A.;Ricciardi, S.;Riller, T.;Ristorcelli, I.;Rocha, G.;Roman, M.;Rosset, C.;Roudier, G.;Rowan-Robinson, M.;Rubinõ-Martín, J. A.;Rusholme, B.;Salerno, E.;Sandri, M.;Santos, D.;Savini, G.;Schiavon, F.;Scott, D.;Seiffert, M. D.;Shellard, E. P. S.;Spencer, L. D.;Starck, J. -L.;Stompor, R.;Sudiwala, R.;Sunyaev, R.;Sureau, F.;Sutton, D.;Suur-Uski, A. -S.;Sygnet, J. -F.;Tauber, J. A.;Tavagnacco, D.;Terenzi, L.;Toffolatti, L.;Tomasi, M.;Tristram, M.;Tucci, M.;Tuovinen, J.;Türler, M.;Umana, G.;Valenziano, L.;Valiviita, J.;Van Tent, B.;Varis, J.;Viel, M.;Vielva, P.;Villa, F.;Vittorio, N.;Wade, L. A.;Wandelt, B. D.;Wehus, I. K.;Wilkinson, A.;Xia, J. -Q.;Yvon, D.;Zacchei, A.;Zonca, A.
2014
Abstract
Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to â.," = 2000. The parameter constraints on ΛCDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about β =-4 to-2. Considering both morphology and prior knowledge of the low frequencycomponents, the index map allows us to associate a steep spectral index (β<-3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz, a flat index of β>-2.3 with strong free-free emission, and intermediate values with synchrotron emission.
Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R...espandi
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2357572
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
77
247
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.