Cutaneous administration represents a good strategy to treat skin diseases, avoiding side effects related to systemic administration. Apart from conventional therapy, based on the use of semi-solid formulation such as gel, ointments and creams, recently the use of specialized delivery systems based on lipid has been taken hold. This review provides an overview about the use of cubic phases, cubosomes and ethosomes, as lipid systems recently proposed to treat skin pathologies. In addition in the final part of the review cubic phases, cubosomes and ethosomes are compared to solid lipid nanoparticles and lecithin organogel with respect to their potential as delivery systems for cutaneous application. It has been reported that lipid nanosystems are able to dissolve and deliver active molecules in a controlled fashion, thereby improving their bioavailability and reducing side-effects. Particularly lipid matrixes are characterized by skin affinity and biocompatibility allowing their application on skin. Indeed, after cutaneous administration, the lipid matrix of cubic phases and cubosomes coalesces with the lipids of the stratum comeum and leads to the formation of a lipid depot from which the drug associated to the nanosystem can be released in the deeper skin strata in a controlled manner. Ethosomes are characterized by a malleable structure that promotes their interaction with skin, improving their potential as skin delivery systems with respect to liposomes. Also in the case of solid lipid nanoparticles it has been suggested a deep interaction between lipid matrix and skin strata that endorses sustained and prolonged drug release. Concerning lecithin organogel, the peculiar structure of this system, where lecithin exerts a penetration enhancer role, allows a deep interaction with skin strata, promoting the transdermal absorption of the encapsulated drugs.

Cubic Phases, Cubosomes and Ethosomes for Cutaneous Application

ESPOSITO, Elisabetta;NASTRUZZI, Claudio;CORTESI, Rita
2016

Abstract

Cutaneous administration represents a good strategy to treat skin diseases, avoiding side effects related to systemic administration. Apart from conventional therapy, based on the use of semi-solid formulation such as gel, ointments and creams, recently the use of specialized delivery systems based on lipid has been taken hold. This review provides an overview about the use of cubic phases, cubosomes and ethosomes, as lipid systems recently proposed to treat skin pathologies. In addition in the final part of the review cubic phases, cubosomes and ethosomes are compared to solid lipid nanoparticles and lecithin organogel with respect to their potential as delivery systems for cutaneous application. It has been reported that lipid nanosystems are able to dissolve and deliver active molecules in a controlled fashion, thereby improving their bioavailability and reducing side-effects. Particularly lipid matrixes are characterized by skin affinity and biocompatibility allowing their application on skin. Indeed, after cutaneous administration, the lipid matrix of cubic phases and cubosomes coalesces with the lipids of the stratum comeum and leads to the formation of a lipid depot from which the drug associated to the nanosystem can be released in the deeper skin strata in a controlled manner. Ethosomes are characterized by a malleable structure that promotes their interaction with skin, improving their potential as skin delivery systems with respect to liposomes. Also in the case of solid lipid nanoparticles it has been suggested a deep interaction between lipid matrix and skin strata that endorses sustained and prolonged drug release. Concerning lecithin organogel, the peculiar structure of this system, where lecithin exerts a penetration enhancer role, allows a deep interaction with skin strata, promoting the transdermal absorption of the encapsulated drugs.
2016
Esposito, Elisabetta; Drechsler, Markus; Nastruzzi, Claudio; Cortesi, Rita
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2355643
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact