We present a new approach to design resonant dc-dc converters, that allows us to achieve both a more accurate implementation and a simpler architecture, by reducing the number of required passive components. The approach is applied to a class-E topology, and it is based on the analytic solution of the system of differential equations regulating the converter evolution. Our technique is also capable of taking into account the most important circuit nonidealities. This represents an important breakthrough with respect to the state of the art, where class-E circuit analysis is based on strong simplifying assumptions, and the final circuit design is achieved by means of numerical simulations after many time-consuming parametric sweeps. The developed methodology is dimensionless, and the achieved design curves can be denormalized to easily get the desired circuit design. Measurements on two different prototypes confirm an extremely high adherence to the developed mathematical approach.

An Analytical Approach for the Design of Class-E Resonant DC-DC Converters

BERTONI, Nicola;PARESCHI, Fabio;SETTI, Gianluca
2016

Abstract

We present a new approach to design resonant dc-dc converters, that allows us to achieve both a more accurate implementation and a simpler architecture, by reducing the number of required passive components. The approach is applied to a class-E topology, and it is based on the analytic solution of the system of differential equations regulating the converter evolution. Our technique is also capable of taking into account the most important circuit nonidealities. This represents an important breakthrough with respect to the state of the art, where class-E circuit analysis is based on strong simplifying assumptions, and the final circuit design is achieved by means of numerical simulations after many time-consuming parametric sweeps. The developed methodology is dimensionless, and the achieved design curves can be denormalized to easily get the desired circuit design. Measurements on two different prototypes confirm an extremely high adherence to the developed mathematical approach.
2016
Bertoni, Nicola; Frattini, Giovanni; Massolini, Roberto G.; Pareschi, Fabio; Rovatti, Riccardo; Setti, Gianluca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2352102
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 35
social impact