Nonsense mutations cover about 10% of cystic fibrosis (CF) patients and generate premature termination codons (PTCs) leading to premature translational termination and causing the synthesis of truncated non-functional or partially functional CFTR (cystic fibrosis transmembrane conductance regulator) protein. The read-through approach is the suppression of translation terminations at PTCs and it has been developed as a therapeutic strategy to restore full-length protein using aminoglycoside antibiotics or PTC124. Phenotypic consequences of PTCs can be exacerbated by the nonsense-mediated mRNA decay (NMD) pathway, which detects and degrades mRNA containing PTC. Therefore, modulation of NMD is also of interest as a potential target for suppression therapy. Not all PTCs are susceptible to the read-through treatment alone, especially where the nonsense mutations are combined with other CFTR mutations. For example, many CF patients present the highly frequent F508del CF mutation, causing an alteration of the cell membrane positioning of the CFTR channel. Pharmacological correctors that rescue the trafficking of F508del CFTR may overcome this defect. A combined administration of correctors/potentiators, read-through molecules, and/or NMD inhibitors, depending on the genotype of the CF patients, could be the basis for the design of a personalized therapeutic approach.
Therapy for Cystic Fibrosis Caused by Nonsense Mutations
GAMBARI, RobertoPrimo
;BREVEGLIERI, GiuliaSecondo
;SALVATORI, Francesca;FINOTTI, AlessiaPenultimo
;BORGATTI, Monica
Ultimo
2015
Abstract
Nonsense mutations cover about 10% of cystic fibrosis (CF) patients and generate premature termination codons (PTCs) leading to premature translational termination and causing the synthesis of truncated non-functional or partially functional CFTR (cystic fibrosis transmembrane conductance regulator) protein. The read-through approach is the suppression of translation terminations at PTCs and it has been developed as a therapeutic strategy to restore full-length protein using aminoglycoside antibiotics or PTC124. Phenotypic consequences of PTCs can be exacerbated by the nonsense-mediated mRNA decay (NMD) pathway, which detects and degrades mRNA containing PTC. Therefore, modulation of NMD is also of interest as a potential target for suppression therapy. Not all PTCs are susceptible to the read-through treatment alone, especially where the nonsense mutations are combined with other CFTR mutations. For example, many CF patients present the highly frequent F508del CF mutation, causing an alteration of the cell membrane positioning of the CFTR channel. Pharmacological correctors that rescue the trafficking of F508del CFTR may overcome this defect. A combined administration of correctors/potentiators, read-through molecules, and/or NMD inhibitors, depending on the genotype of the CF patients, could be the basis for the design of a personalized therapeutic approach.File | Dimensione | Formato | |
---|---|---|---|
48897-CHAPTER DEF-PUBBLICATO ON LINE.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
253.25 kB
Formato
Adobe PDF
|
253.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.