Oxidative stress is instrumental in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD). Novel therapeutic strategies that target macrophages, based on the use of antioxidant compounds, could be explored to improve corticosteroids responses in COPD patients. In this study, inhalable microparticles containing budesonide (BD) and resveratrol (RES) were prepared and characterized. This approach was undertaken to develop a multi-drug inhalable formulation with anti-oxidant and anti-inflammatory activities for treatment of chronic lung diseases. The inhalable microparticles containing different ratio of BD and RES were prepared by spray drying. The physico-chemical properties of the formulations were characterized in terms of surface morphology, particle size, physical and thermal stability. Additionally, in vitro aerosol performances of these formulations were evaluated with the multi-stage liquid impinger (MSLI) at 60 and 90 l/min, respectively. The cytotoxicity effect of the formulations was evaluated using rat alveolar macrophages. The biological responses of alveolar macrophages in terms of cytokine expressions, nitric oxide (NO) production and free radical scavenging activities were also tested. The co-spray dried (Co-SD) microparticles of all formulations exhibited morphologies appropriate for inhalation administration. Analysis of the deposition profiles showed an increase in aerosol performance proportional to BD concentration. Cell viability assay demonstrated that alveolar macrophages could tolerate a wide range of RES and BD concentrations. In addition, RES and BD were able to decrease the levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS) induced alveolar macrophages. This study has successfully established the manufacture of Co-SD formulations of RES and BD with morphology and aerosol properties suitable for inhalation drug delivery, negligible in vitro toxicity and enhanced efficacy to control inflammation and oxidative stress in LPS-induced alveolar macrophages.

Co-spray dried resveratrol and budesonide inhalation formulation for reducing inflammation and oxidative stress in rat alveolar macrophages

TROTTA, Valentina
Primo
;
Traini, Daniela
Penultimo
;
SCALIA, Santo
Ultimo
2016

Abstract

Oxidative stress is instrumental in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD). Novel therapeutic strategies that target macrophages, based on the use of antioxidant compounds, could be explored to improve corticosteroids responses in COPD patients. In this study, inhalable microparticles containing budesonide (BD) and resveratrol (RES) were prepared and characterized. This approach was undertaken to develop a multi-drug inhalable formulation with anti-oxidant and anti-inflammatory activities for treatment of chronic lung diseases. The inhalable microparticles containing different ratio of BD and RES were prepared by spray drying. The physico-chemical properties of the formulations were characterized in terms of surface morphology, particle size, physical and thermal stability. Additionally, in vitro aerosol performances of these formulations were evaluated with the multi-stage liquid impinger (MSLI) at 60 and 90 l/min, respectively. The cytotoxicity effect of the formulations was evaluated using rat alveolar macrophages. The biological responses of alveolar macrophages in terms of cytokine expressions, nitric oxide (NO) production and free radical scavenging activities were also tested. The co-spray dried (Co-SD) microparticles of all formulations exhibited morphologies appropriate for inhalation administration. Analysis of the deposition profiles showed an increase in aerosol performance proportional to BD concentration. Cell viability assay demonstrated that alveolar macrophages could tolerate a wide range of RES and BD concentrations. In addition, RES and BD were able to decrease the levels of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS) induced alveolar macrophages. This study has successfully established the manufacture of Co-SD formulations of RES and BD with morphology and aerosol properties suitable for inhalation drug delivery, negligible in vitro toxicity and enhanced efficacy to control inflammation and oxidative stress in LPS-induced alveolar macrophages.
Trotta, Valentina; Lee, Wing Hin; Loo, Ching Yee; Young, Paul M.; Traini, Daniela; Scalia, Santo
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0928098716300483-main.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Postprint11392_2351256.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 314.62 kB
Formato Adobe PDF
314.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2351256
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact