The cortex of the rabbit (Oryctolagus cuniculus) is rich in melatonin binding sites, and particularly abundant is the parietal cortex. Consequently, we characterized the putative melatonin receptor in the parietal cortex by a series of in vitro ligand-receptor binding experiments and biochemical and electrophysiological studies. The in vitro saturation and competition experiments demonstrated that the binding in the crude cortical membrane preparations was of high affinity and specificity. Guanine nucleotides (GDP, GTP, and GTP gamma S) inhibited the specific 2-[125I]iodomelatonin binding in a dose-dependent manner. Coincubation with a nonhydrolyzable GTP analog provoked a shift in the binding affinity; the numerical values of the Kd increased from 20-30 to 200-600 pM. Melatonin, in nanomolar concentrations, was able to inhibit the forskolin-stimulated accumulation of cAMP in parietal cortex explants, and preincubation with pertussis toxin counteracted this effect of melatonin. Apparently, the melatonin binding site in the rabbit parietal cortex is linked to its second messenger via a pertussis toxin-sensitive G-protein, probably of the inhibitory Gi class, similar to what has been described for different parts of the brain of other vertebrates. The experiments on the spontaneous firing activity of single neurons in the third to fourth layer of the parietal cortex in anesthetized animals showed that melatonin and its potent agonist 2-iodomelatonin exhibited gamma-aminobutyric acid (GABA)-like effects and were able alone, in nanomolar concentrations, to significantly slow the neuronal firing activity. Moreover, both melatonin and 2-iodomelatonin potentiated the effect of GABA on the neuronal activity, leading to powerful inhibition of the tested neurons. Undoubtedly, the binding site in the rabbit parietal cortex possesses all of the characteristics of a functional receptor. We suggest that melatonin is involved in the control of fundamental cortical functions and that it acts in concert with GABA, one of the two major inhibitory neurotransmitters in the central nervous system.

Melatonin signal transduction and mechanism of action in the Central Nervous System. Using the rabbit cortex as a model

CAPSONI, Simona;
1992

Abstract

The cortex of the rabbit (Oryctolagus cuniculus) is rich in melatonin binding sites, and particularly abundant is the parietal cortex. Consequently, we characterized the putative melatonin receptor in the parietal cortex by a series of in vitro ligand-receptor binding experiments and biochemical and electrophysiological studies. The in vitro saturation and competition experiments demonstrated that the binding in the crude cortical membrane preparations was of high affinity and specificity. Guanine nucleotides (GDP, GTP, and GTP gamma S) inhibited the specific 2-[125I]iodomelatonin binding in a dose-dependent manner. Coincubation with a nonhydrolyzable GTP analog provoked a shift in the binding affinity; the numerical values of the Kd increased from 20-30 to 200-600 pM. Melatonin, in nanomolar concentrations, was able to inhibit the forskolin-stimulated accumulation of cAMP in parietal cortex explants, and preincubation with pertussis toxin counteracted this effect of melatonin. Apparently, the melatonin binding site in the rabbit parietal cortex is linked to its second messenger via a pertussis toxin-sensitive G-protein, probably of the inhibitory Gi class, similar to what has been described for different parts of the brain of other vertebrates. The experiments on the spontaneous firing activity of single neurons in the third to fourth layer of the parietal cortex in anesthetized animals showed that melatonin and its potent agonist 2-iodomelatonin exhibited gamma-aminobutyric acid (GABA)-like effects and were able alone, in nanomolar concentrations, to significantly slow the neuronal firing activity. Moreover, both melatonin and 2-iodomelatonin potentiated the effect of GABA on the neuronal activity, leading to powerful inhibition of the tested neurons. Undoubtedly, the binding site in the rabbit parietal cortex possesses all of the characteristics of a functional receptor. We suggest that melatonin is involved in the control of fundamental cortical functions and that it acts in concert with GABA, one of the two major inhibitory neurotransmitters in the central nervous system.
1992
Stankov, B; Biella, G; Panara, C; Lucini, V; Capsoni, Simona; Fauteck, J; Cozzi, B; Fraschini, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2349947
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 82
social impact