Sortilin-related receptor with A-type repeats (SorLA, also known as LR11) has been implicated in Alzheimer’s disease (AD). Thus, genetic studies associated SorLA gene variants with the risk of sporadic AD. Also, in vitro and in vivo studies showed that SorLA impairs processing of the amyloid- protein precursor (APP) to amyloid-. In particular, it has been found that loss of SorLA accelerates senile plaque deposition in mouse models overexpressing mutant forms of human APP and presenilin 1. Here we tested the possibility that SorLA deficiency also interferes with behavioral and neuropathological endpoints in an alternative murine AD model, the AD10 anti-nerve growth factor (NGF) mouse, in which amyloid- accumulation derives from the altered processing of endogenous APP. In addition to alterations in APP processing, AD10 mice also show cholinergic deficit and tau hyperphosphorylation resulting in behavioral deficits in learning and memory paradigms. We found that the loss of SorLA not only exacerbates early amyloid pathology but, at the same time, protects from cholinergic deficit and from early phospho-tau mislocalization. The results show that in the AD10 anti-NGF mouse model the APP processing-related aspects of neurodegeneration can be dissociated from those related to tau posttranslational processing and to cholinergic phenotypic maintenance by modulation of SorLA expression. We suggest that SorLA regulates different aspects of neurodegeneration in a complex way, supporting the hypothesis that SorLA expression might be critical not only for amyloid-related pathology but also for other cellular processes altered in AD.

SorLA Deficiency Dissects Amyloid Pathology from Tau and Cholinergic Neurodegeneration in a Mouse Model of Alzheimer's Disease

CAPSONI, Simona;
2013

Abstract

Sortilin-related receptor with A-type repeats (SorLA, also known as LR11) has been implicated in Alzheimer’s disease (AD). Thus, genetic studies associated SorLA gene variants with the risk of sporadic AD. Also, in vitro and in vivo studies showed that SorLA impairs processing of the amyloid- protein precursor (APP) to amyloid-. In particular, it has been found that loss of SorLA accelerates senile plaque deposition in mouse models overexpressing mutant forms of human APP and presenilin 1. Here we tested the possibility that SorLA deficiency also interferes with behavioral and neuropathological endpoints in an alternative murine AD model, the AD10 anti-nerve growth factor (NGF) mouse, in which amyloid- accumulation derives from the altered processing of endogenous APP. In addition to alterations in APP processing, AD10 mice also show cholinergic deficit and tau hyperphosphorylation resulting in behavioral deficits in learning and memory paradigms. We found that the loss of SorLA not only exacerbates early amyloid pathology but, at the same time, protects from cholinergic deficit and from early phospho-tau mislocalization. The results show that in the AD10 anti-NGF mouse model the APP processing-related aspects of neurodegeneration can be dissociated from those related to tau posttranslational processing and to cholinergic phenotypic maintenance by modulation of SorLA expression. We suggest that SorLA regulates different aspects of neurodegeneration in a complex way, supporting the hypothesis that SorLA expression might be critical not only for amyloid-related pathology but also for other cellular processes altered in AD.
2013
Capsoni, Simona; Carlo, As; Vignone, D; Amato, G; Criscuolo, C; Willnow, Te; Cattaneo, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2349807
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact