Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We propose the application of the multi-objective evolutionary algorithm ENORA to the task of feature selection for multi-class classification of data extracted from an integrated multi-channel multi-skill contact center, which include technical, service and central data for each session. Additionally, we propose a methodology to integrate feature selection for classification, model evaluation, and decision making to choose the most satisfactory model according to a "a posteriori" process in a multi-objective context. We check out our results by comparing the performance and the classification rate against the well-known multi-objective evolutionary algorithm NSGA-II. Finally, the best obtained solution is validated by a data expert’s semantic interpretation of the classifier.

Attribute Selection via Multi-Objective Evolutionary Computation Applied to Multi-Skill Contact Center Data Classification

SCIAVICCO, Guido;
2015

Abstract

Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We propose the application of the multi-objective evolutionary algorithm ENORA to the task of feature selection for multi-class classification of data extracted from an integrated multi-channel multi-skill contact center, which include technical, service and central data for each session. Additionally, we propose a methodology to integrate feature selection for classification, model evaluation, and decision making to choose the most satisfactory model according to a "a posteriori" process in a multi-objective context. We check out our results by comparing the performance and the classification rate against the well-known multi-objective evolutionary algorithm NSGA-II. Finally, the best obtained solution is validated by a data expert’s semantic interpretation of the classifier.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2342933
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact