We present a new determination of the concentration-mass (c-M) relation for galaxy clusters based on our comprehensive lensing analysis of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble (CLASH). Our sample spans a redshift range between 0.19 and 0.89. We combine weak-lensing constraints from the Hubble Space Telescope (HST) and from ground-based wide-field data with strong lensing constraints from HST. The results are reconstructions of the surface-mass density for all CLASH clusters on multi-scale grids. Our derivation of Navarro-Frenk-White parameters yields virial masses between 0.53× {{10}15} {{M}⊙ }/h and 1.76× {{10}15} {{M}⊙ }/h and the halo concentrations are distributed around {{c}200c}˜ 3.7 with a 1σ significant negative slope with cluster mass. We find an excellent 4% agreement in the median ratio of our measured concentrations for each cluster and the respective expectation from numerical simulations after accounting for the CLASH selection function based on X-ray morphology. The simulations are analyzed in two dimensions to account for possible biases in the lensing reconstructions due to projection effects. The theoretical c-M relation from our X-ray selected set of simulated clusters and the c-M relation derived directly from the CLASH data agree at the 90% confidence level.
CLASH: The Concentration-Mass Relation of Galaxy Clusters
ROSATI, Piero;
2015
Abstract
We present a new determination of the concentration-mass (c-M) relation for galaxy clusters based on our comprehensive lensing analysis of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble (CLASH). Our sample spans a redshift range between 0.19 and 0.89. We combine weak-lensing constraints from the Hubble Space Telescope (HST) and from ground-based wide-field data with strong lensing constraints from HST. The results are reconstructions of the surface-mass density for all CLASH clusters on multi-scale grids. Our derivation of Navarro-Frenk-White parameters yields virial masses between 0.53× {{10}15} {{M}⊙ }/h and 1.76× {{10}15} {{M}⊙ }/h and the halo concentrations are distributed around {{c}200c}˜ 3.7 with a 1σ significant negative slope with cluster mass. We find an excellent 4% agreement in the median ratio of our measured concentrations for each cluster and the respective expectation from numerical simulations after accounting for the CLASH selection function based on X-ray morphology. The simulations are analyzed in two dimensions to account for possible biases in the lensing reconstructions due to projection effects. The theoretical c-M relation from our X-ray selected set of simulated clusters and the c-M relation derived directly from the CLASH data agree at the 90% confidence level.File | Dimensione | Formato | |
---|---|---|---|
Merten_2015_ApJ_806_4.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
5.82 MB
Formato
Adobe PDF
|
5.82 MB | Adobe PDF | Visualizza/Apri |
1404.1376.Rosat.2015.preprint.pdf
accesso aperto
Descrizione: versione preprint
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
5.86 MB
Formato
Adobe PDF
|
5.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.