In the present work, the impact behavior of unmodified A356 alloys with the addition of Ni or V in as-cast and T6 heat-treated conditions was assessed. Charpy V-notched specimens obtained from sand and permanent mold casting showed low total absorbed energy average values (Wt<2 J). SEM analysis of fracture profiles and surfaces indicated a Si-driven crack propagation with a predominant transgranular fracture mode. Occasionally, intergranular contributions to fracture were detected in the permanent mold cast alloys due to the locally finer microstructure. Concurrent mechanisms related to the chemical composition, solidification conditions and heat treatment were found to control the impact properties of the alloys. While the trace element Ni exerted only minor effects on the impact toughness of the A356 alloy, V had a strong influence: (i) V-containing sand cast alloys absorbed slightly higher impact energies compared to the corresponding A356 base alloys; (ii) in the permanent mold cast alloys, V in solid solution led to a considerable loss of ductility, which in turn decreased the total absorbed energy.

Impact Behavior of A356 Foundry Alloys in the Presence of Trace Elements Ni and V

CASARI, Daniele
Primo
;
MERLIN, Mattia;GARAGNANI, Gian Luca
Ultimo
2015

Abstract

In the present work, the impact behavior of unmodified A356 alloys with the addition of Ni or V in as-cast and T6 heat-treated conditions was assessed. Charpy V-notched specimens obtained from sand and permanent mold casting showed low total absorbed energy average values (Wt<2 J). SEM analysis of fracture profiles and surfaces indicated a Si-driven crack propagation with a predominant transgranular fracture mode. Occasionally, intergranular contributions to fracture were detected in the permanent mold cast alloys due to the locally finer microstructure. Concurrent mechanisms related to the chemical composition, solidification conditions and heat treatment were found to control the impact properties of the alloys. While the trace element Ni exerted only minor effects on the impact toughness of the A356 alloy, V had a strong influence: (i) V-containing sand cast alloys absorbed slightly higher impact energies compared to the corresponding A356 base alloys; (ii) in the permanent mold cast alloys, V in solid solution led to a considerable loss of ductility, which in turn decreased the total absorbed energy.
2015
Casari, Daniele; Ludwig, Thomas H.; Merlin, Mattia; Arnberg, Lars; Garagnani, Gian Luca
File in questo prodotto:
File Dimensione Formato  
art:10.1007/s11665-014-1355-3.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392_2338950_PRE_Merlin.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 12.11 MB
Formato Adobe PDF
12.11 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2338950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact