The quest for optimal sensing matrices is crucial in the design of efficient Compressed Sensing architectures. In this paper we propose a maximum entropy criterion for the design of optimal Hadamard sensing matrices (and similar deterministic ensembles) when the signal being acquired is sparse and non-white. Since the resulting design strategy entails a combinatorial step, we devise a fast evolutionary algorithm to find sensing matrices that yield high-entropy measurements. Experimental results exploiting this strategy show quality gains when performing the recovery of optimally sensed small images and electrocardiographic signals.
Maximum entropy hadamard sensing of sparse and localized signals
SETTI, Gianluca
2014
Abstract
The quest for optimal sensing matrices is crucial in the design of efficient Compressed Sensing architectures. In this paper we propose a maximum entropy criterion for the design of optimal Hadamard sensing matrices (and similar deterministic ensembles) when the signal being acquired is sparse and non-white. Since the resulting design strategy entails a combinatorial step, we devise a fast evolutionary algorithm to find sensing matrices that yield high-entropy measurements. Experimental results exploiting this strategy show quality gains when performing the recovery of optimally sensed small images and electrocardiographic signals.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.