Adenosine (ADO) and nucleotides such as ATP, ADP, and uridine 5'-triphosphate (UTP), among others, may serve as extracellular signaling molecules. These mediators activate specific cell-surface receptors-namely, purinergic 1 and 2 (P1 and P2)-to modulate crucial pathophysiological responses. Regulation of this process is maintained by nucleoside and nucleotide transporters, as well as the ectonucleotidases ectonucleoside triphosphate diphosphohydrolase [ENTPD; cluster of differentiation (CD)39] and ecto-5'-nucleotidase (5'-NT; CD73), among others. Cells involved in tissue repair, healing, and scarring respond to both ADO and ATP. Our recent investigations have shown that modulation of purinergic signaling regulates matrix deposition during tissue repair and fibrosis in several organs. Cells release adenine nucleotides into the extracellular space, where these mediators are converted by CD39 and CD73 into ADO, which is anti-inflammatory in the short term but may also promote dermal, heart, liver, and lung fibrosis with repetitive signaling under defined circumstances. Extracellular ATP stimulates cardiac fibroblast proliferation, lung inflammation, and fibrosis. P2Y2 (UTP/ATP) and P2Y6 [ADP/UTP/uridine 5'-diphosphate (UDP)] have been shown to have profibrotic effects, as well. Modulation of purinergic signaling represents a novel approach to preventing or diminishing fibrosis. We provide an overview of the current understanding of purinergic signaling in scarring and discuss its potential to prevent or decrease fibrosis.
Purinergic signaling in scarring
FERRARI, Davide
Primo
;GAMBARI, RobertoSecondo
;
2016
Abstract
Adenosine (ADO) and nucleotides such as ATP, ADP, and uridine 5'-triphosphate (UTP), among others, may serve as extracellular signaling molecules. These mediators activate specific cell-surface receptors-namely, purinergic 1 and 2 (P1 and P2)-to modulate crucial pathophysiological responses. Regulation of this process is maintained by nucleoside and nucleotide transporters, as well as the ectonucleotidases ectonucleoside triphosphate diphosphohydrolase [ENTPD; cluster of differentiation (CD)39] and ecto-5'-nucleotidase (5'-NT; CD73), among others. Cells involved in tissue repair, healing, and scarring respond to both ADO and ATP. Our recent investigations have shown that modulation of purinergic signaling regulates matrix deposition during tissue repair and fibrosis in several organs. Cells release adenine nucleotides into the extracellular space, where these mediators are converted by CD39 and CD73 into ADO, which is anti-inflammatory in the short term but may also promote dermal, heart, liver, and lung fibrosis with repetitive signaling under defined circumstances. Extracellular ATP stimulates cardiac fibroblast proliferation, lung inflammation, and fibrosis. P2Y2 (UTP/ATP) and P2Y6 [ADP/UTP/uridine 5'-diphosphate (UDP)] have been shown to have profibrotic effects, as well. Modulation of purinergic signaling represents a novel approach to preventing or diminishing fibrosis. We provide an overview of the current understanding of purinergic signaling in scarring and discuss its potential to prevent or decrease fibrosis.File | Dimensione | Formato | |
---|---|---|---|
Purinergic signaling in scarring.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
662.66 kB
Formato
Adobe PDF
|
662.66 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.