Aim of the study was to investigate the performance of the new insecticide “spirotetramat” as an alternative solution of “abamectin” for the control of Cacopsylla pyri L. (Hemiptera: Psyllidae) in the context of an IPM program in European pear, Pyrus communis L.. Laboratory bioassays for the estimation of LC50 and LC90 of both insecticides were performed using four populations collected in Emilia-Romagna (Italy) orchards where different pest management strategies were used (organic, integrated, and conventional). The same populations were also analyzed for the main insecticide detoxifying activities in nymphs by spectrofluorimetric in vitro assays. The performance of the two insecticides was also tested on field on one population under integrated pest management conditions. The laboratory experiments showed that the LC90 of spirotetramat were lower than the highest field concentration allowed in Europe (172.80 mg AI liter1) giving reassurance about the efficacy of the product. Concerning the abamectin, the laboratory bioassays did not show strong indications of resistance development of C. pyri populations of Emilia-Romagna. A similarity in enzyme detoxifying activity was observed in both insecticides indicating a general absence of a significant insecticide resistance. The field trial showed a high efficacy (>90 %) of spirotetramat on C. pyri already after 15 d from application, and it was significantly higher from abamectin. Overall, spirotetramat is one more choice for C. pyri control, as well as abamectin in order to minimize the risks of occurrence of insecticide resistance.

Testing Spirotetramat as an Alternative Solution to Abamectin for Cacopsylla pyri (Hemiptera: Psyllidae) Control: Laboratory and Field Tests

CIVOLANI, Stefano;CHICCA, Milvia;FANO, Elisa Anna
2015

Abstract

Aim of the study was to investigate the performance of the new insecticide “spirotetramat” as an alternative solution of “abamectin” for the control of Cacopsylla pyri L. (Hemiptera: Psyllidae) in the context of an IPM program in European pear, Pyrus communis L.. Laboratory bioassays for the estimation of LC50 and LC90 of both insecticides were performed using four populations collected in Emilia-Romagna (Italy) orchards where different pest management strategies were used (organic, integrated, and conventional). The same populations were also analyzed for the main insecticide detoxifying activities in nymphs by spectrofluorimetric in vitro assays. The performance of the two insecticides was also tested on field on one population under integrated pest management conditions. The laboratory experiments showed that the LC90 of spirotetramat were lower than the highest field concentration allowed in Europe (172.80 mg AI liter1) giving reassurance about the efficacy of the product. Concerning the abamectin, the laboratory bioassays did not show strong indications of resistance development of C. pyri populations of Emilia-Romagna. A similarity in enzyme detoxifying activity was observed in both insecticides indicating a general absence of a significant insecticide resistance. The field trial showed a high efficacy (>90 %) of spirotetramat on C. pyri already after 15 d from application, and it was significantly higher from abamectin. Overall, spirotetramat is one more choice for C. pyri control, as well as abamectin in order to minimize the risks of occurrence of insecticide resistance.
2015
Civolani, Stefano; Boselli, Mauro; Butturini, Alda; Chicca, Milvia; Cassanelli, Stefano; Tommasini, Maria Grazia; Aschonitis, Vassilis; Fano, Elisa Anna
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2338250
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact