Porcine Sertoli cells (pSCs) have been employed for cell therapy in pre-clinical studies for several chronic/immune diseases as they deliver molecules associated with trophic and anti-inflammatory effects. To be employed for human xenografts, pSCs products need to comply with safety and stability. To fulfill such requirements, we employed a microencapsulation technology to increase pre-transplant storage stability of specific pathogen-free pSCs (SPF-pSCs) and evaluated the in vivo long-term viability and safety of grafts. METHODS: Specific pathogen free neonatal pigs underwent testis excision under sterility. pSCs were isolated, characterized by immunofluorescence (IF) and cytofluorimetric analysis (CA) and examined in terms of viability and function [namely, production of anti-müllerian hormone (AMH), inhibin B, and transforming growth factor beta-1 (TFGβ-1)]. After microencapsulation in barium alginate microcapsules (Ba-MC), long-term SPF-pSCs (Ba-MCpSCs) viability and barium concentrations were evaluated at 1, 24 throughout 40 h to establish pre-transplant storage conditions. RESULTS: The purity of isolated pSCs was about 95% with negligible contaminating cells. Cultured pSCs monolayers, both prior to and after microencapsulation, maintained high function and full viability up to 24 h of storage. At 40 h post-encapsulation, pSCs viability decreased to 80%. Barium concentration in Ba-MCpSCs lagged below the normal maximum daily allowance and was stable for 4 months in mice with no evident side effects. CONCLUSIONS: Such results suggest that this protocol for the isolation and microencapsulation of pSCs is compatible with long-haul transportation and that Ba-MCpSCs could be potentially employable for xenotransplantation.
Long-term stability, functional competence, and safety of microencapsulated specific pathogen-free neonatal porcine Sertoli cells: A potential product for cell transplant therapy
NASTRUZZI, Claudio;
2015
Abstract
Porcine Sertoli cells (pSCs) have been employed for cell therapy in pre-clinical studies for several chronic/immune diseases as they deliver molecules associated with trophic and anti-inflammatory effects. To be employed for human xenografts, pSCs products need to comply with safety and stability. To fulfill such requirements, we employed a microencapsulation technology to increase pre-transplant storage stability of specific pathogen-free pSCs (SPF-pSCs) and evaluated the in vivo long-term viability and safety of grafts. METHODS: Specific pathogen free neonatal pigs underwent testis excision under sterility. pSCs were isolated, characterized by immunofluorescence (IF) and cytofluorimetric analysis (CA) and examined in terms of viability and function [namely, production of anti-müllerian hormone (AMH), inhibin B, and transforming growth factor beta-1 (TFGβ-1)]. After microencapsulation in barium alginate microcapsules (Ba-MC), long-term SPF-pSCs (Ba-MCpSCs) viability and barium concentrations were evaluated at 1, 24 throughout 40 h to establish pre-transplant storage conditions. RESULTS: The purity of isolated pSCs was about 95% with negligible contaminating cells. Cultured pSCs monolayers, both prior to and after microencapsulation, maintained high function and full viability up to 24 h of storage. At 40 h post-encapsulation, pSCs viability decreased to 80%. Barium concentration in Ba-MCpSCs lagged below the normal maximum daily allowance and was stable for 4 months in mice with no evident side effects. CONCLUSIONS: Such results suggest that this protocol for the isolation and microencapsulation of pSCs is compatible with long-haul transportation and that Ba-MCpSCs could be potentially employable for xenotransplantation.File | Dimensione | Formato | |
---|---|---|---|
xen12175.pdf
solo gestori archivio
Descrizione: Full text ed
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
835.75 kB
Formato
Adobe PDF
|
835.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2337931_articolo_Nastruzzi_C.pdf
accesso aperto
Descrizione: versione preprint
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
490.77 kB
Formato
Adobe PDF
|
490.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.