In this paper we dene jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the nite dimensional case. We also dene the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.

Some fine properties of BV functions on Wiener spaces

AMBROSIO, Luigi;MIRANDA, Michele;PALLARA, Diego
2015

Abstract

In this paper we dene jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the nite dimensional case. We also dene the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
2015
Ambrosio, Luigi; Miranda, Michele; Pallara, Diego
File in questo prodotto:
File Dimensione Formato  
[22993274 - Analysis and Geometry in Metric Spaces] Some Fine Properties of BV Functions on Wiener Spaces.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 441.34 kB
Formato Adobe PDF
441.34 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2336174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact