The use of a horizontal ground heat exchanger may represent a reliable and cost effective option for ground-source thermal applications. This study presents the thermal performance analysis of a drainage trench used as ground heat exchanger (GHE) coupled with underground thermal energy storage (UTES). The trench is dug in shallow soil and filled with encapsulated phase change materials (PCMs) as granular filler. Two types of PCMs with different melting points are supposed to operate in summer and winter. Fluid flow and heat transfer in porous media are solved via a 2D finite element model to perform a yearly simulation under hourly-scale boundary conditions. The equivalent heat capacity approach is applied to consider the latent heat of the PCMs. The results show a significant capacity of the trench to smooth thermal waves produced by the heat pump. The effect of the PCMs is analysed by comparing with the corresponding case using coarse gravel as filling material instead of PCMs. The case without PCMs still shows good performance, but PCMs offers the advantages of a seasonal UTES and smoothing thermal wave as well. The proposed solution can be therefore considered as an advanced alternative to other widespread common GHEs.

Heat transfer analysis of underground thermal energy storage in shallow trenches filled with encapsulated phase change materials

BOTTARELLI, Michele;BORTOLONI, Marco;
2015

Abstract

The use of a horizontal ground heat exchanger may represent a reliable and cost effective option for ground-source thermal applications. This study presents the thermal performance analysis of a drainage trench used as ground heat exchanger (GHE) coupled with underground thermal energy storage (UTES). The trench is dug in shallow soil and filled with encapsulated phase change materials (PCMs) as granular filler. Two types of PCMs with different melting points are supposed to operate in summer and winter. Fluid flow and heat transfer in porous media are solved via a 2D finite element model to perform a yearly simulation under hourly-scale boundary conditions. The equivalent heat capacity approach is applied to consider the latent heat of the PCMs. The results show a significant capacity of the trench to smooth thermal waves produced by the heat pump. The effect of the PCMs is analysed by comparing with the corresponding case using coarse gravel as filling material instead of PCMs. The case without PCMs still shows good performance, but PCMs offers the advantages of a seasonal UTES and smoothing thermal wave as well. The proposed solution can be therefore considered as an advanced alternative to other widespread common GHEs.
2015
Bottarelli, Michele; Bortoloni, Marco; Su, Yuehong
File in questo prodotto:
File Dimensione Formato  
ATE-2015-8364R1 (1).pdf

accesso aperto

Descrizione: File post review
Tipologia: Post-print
Licenza: Creative commons
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri
2015.bottarelli.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2334920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
social impact