TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. However, TRAIL can also stimulate the proliferation of cancer cells through the activation of NF-κB, but the exact mechanism is still poorly understood. In this study, we show that chronic exposure to subtoxic concentrations of TRAIL results in acquired resistance. This resistance is associated with the increase in miR-21, miR-30c, and miR-100 expression, which target tumor-suppressor genes fundamental in the response to TRAIL. Importantly, down-regulation of caspase-8 by miR-21 blocks receptor interacting protein-1 cleavage and induces the activation of NF-κB, which regulates these miRNAs. Thus, TRAIL activates a positive feedback loop that sustains the acquired resistance and causes an aggressive phenotype. Finally, we prove that combinatory treatment of NF-κB inhibitors and TRAIL is able to revert resistance and reduce tumor growth, with important consequences for the clinical practice.

A set of NF-κB-regulated microRNAs induces acquired TRAIL resistance in Lung cancer

SECCHIERO, Paola;CROCE, Carlo Maria
2015

Abstract

TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. However, TRAIL can also stimulate the proliferation of cancer cells through the activation of NF-κB, but the exact mechanism is still poorly understood. In this study, we show that chronic exposure to subtoxic concentrations of TRAIL results in acquired resistance. This resistance is associated with the increase in miR-21, miR-30c, and miR-100 expression, which target tumor-suppressor genes fundamental in the response to TRAIL. Importantly, down-regulation of caspase-8 by miR-21 blocks receptor interacting protein-1 cleavage and induces the activation of NF-κB, which regulates these miRNAs. Thus, TRAIL activates a positive feedback loop that sustains the acquired resistance and causes an aggressive phenotype. Finally, we prove that combinatory treatment of NF-κB inhibitors and TRAIL is able to revert resistance and reduce tumor growth, with important consequences for the clinical practice.
2015
Jeon, Young Jun; Middleton, Justin; Kim, Taewan; Laganà, Alessandro; Piovan, Claudia; Secchiero, Paola; Nuovo, Gerard J; Cui, Ri; Joshi, Pooja; Romano...espandi
File in questo prodotto:
File Dimensione Formato  
PNAS-2015-Jeon-E3355-64.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2334854
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 65
social impact