Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
SFERA Archivio dei prodotti della Ricerca dell'Università di Ferrara
The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.
Planck 2013 results. I. Overview of products and scientific results
Ade, P. A. R.;Aghanim, N.;Alves, M. I. R.;Armitage-Caplan, C.;Arnaud, M.;Ashdown, M.;Atrio-Barandela, F.;Aumont, J.;Aussel, H.;Baccigalupi, C.;Banday, A. J.;Barreiro, R. B.;Barrena, R.;Bartelmann, M.;Bartlett, J. G.;Bartolo, N.;Basak, S.;Battaner, E.;Battye, R.;Benabed, K.;Benoît, A.;Benoit-Lévy, A.;Bernard, J. -P.;Bersanelli, M.;Bertincourt, B.;Bethermin, M.;Bielewicz, P.;Bikmaev, I.;Blanchard, A.;Bobin, J.;Bock, J. J.;Böhringer, H.;Bonaldi, A.;Bonavera, L.;Bond, J. R.;Borrill, J.;Bouchet, F. R.;Boulanger, F.;Bourdin, H.;Bowyer, J. W.;Bridges, M.;Brown, M. L.;Bucher, M.;Burenin, R.;Burigana, C.;Butler, R. C.;Calabrese, E.;Cappellini, B.;Cardoso, J. -F.;Carr, R.;Carvalho, P.;Casale, M.;Castex, G.;Catalano, A.;Challinor, A.;Chamballu, A.;Chary, R. -R.;Chen, X.;Chiang, H. C.;Chiang, L. -Y.;Chon, G.;Christensen, P. R.;Churazov, E.;Church, S.;Clemens, M.;Clements, D. L.;Colombi, S.;Colombo, L. P. L.;Combet, C.;Comis, B.;Couchot, F.;Coulais, A.;Crill, B. P.;Cruz, M.;Curto, A.;Cuttaia, F.;Da Silva, A.;Dahle, H.;Danese, L.;Davies, R. D.;Davis, R. J.;De Bernardis, P.;De Rosa, A.;De Zotti, G.;Déchelette, T.;Delabrouille, J.;Delouis, J. -M.;Démoclès, J.;Désert, F. -X.;Dick, J.;Dickinson, C.;Diego, J. M.;Dolag, K.;Dole, H.;Donzelli, S.;Doré, O.;Douspis, M.;Ducout, A.;Dunkley, J.;Dupac, X.;Efstathiou, G.;Elsner, F.;Enßlin, T. A.;Eriksen, H. K.;Fabre, O.;Falgarone, E.;Falvella, M. C.;Fantaye, Y.;Fergusson, J.;Filliard, C.;Finelli, F.;Flores-Cacho, I.;Foley, S.;Forni, O.;Fosalba, P.;Frailis, M.;Fraisse, A. A.;Franceschi, E.;Freschi, M.;Fromenteau, S.;Frommert, M.;Gaier, T. C.;Galeotta, S.;Gallegos, J.;Galli, S.;Gandolfo, B.;Ganga, K.;Gauthier, C.;Génova-Santos, R. T.;Ghosh, T.;Giard, M.;Giardino, G.;Gilfanov, M.;Girard, D.;Giraud-Héraud, Y.;Gjerløw, E.;González-Nuevo, J.;Górski, K. M.;Gratton, S.;Gregorio, A.;Gruppuso, A.;Gudmundsson, J. E.;Haissinski, J.;Hamann, J.;Hansen, F. K.;Hansen, M.;Hanson, D.;Harrison, D. L.;Heavens, A.;Helou, G.;Hempel, A.;Henrot-Versillé, S.;Hernández-Monteagudo, C.;Herranz, D.;Hildebrandt, S. R.;Hivon, E.;Ho, S.;Hobson, M.;Holmes, W. A.;Hornstrup, A.;Hou, Z.;Hovest, W.;Huey, G.;Huffenberger, K. M.;Hurier, G.;Ilić, S.;Jaffe, A. H.;Jaffe, T. R.;Jasche, J.;Jewell, J.;Jones, W. C.;Juvela, M.;Kalberla, P.;Kangaslahti, P.;Keihänen, E.;Kerp, J.;Keskitalo, R.;Khamitov, I.;Kiiveri, K.;Kim, J.;Kisner, T. S.;Kneissl, R.;Knoche, J.;Knox, L.;Kunz, M.;Kurki-Suonio, H.;Lacasa, F.;Lagache, G.;Lähteenmäki, A.;Lamarre, J. -M.;Langer, M.;Lasenby, A.;Lattanzi, M.;Laureijs, R. J.;Lavabre, A.;Lawrence, C. R.;Le Jeune, M.;Leach, S.;Leahy, J. P.;Leonardi, R.;León-Tavares, J.;Leroy, C.;Lesgourgues, J.;Lewis, A.;Li, C.;Liddle, A.;Liguori, M.;Lilje, P. B.;Linden-Vørnle, M.;Lindholm, V.;López-Caniego, M.;Lowe, S.;Lubin, P. M.;Maciás-Pérez, J. F.;Mactavish, C. J.;Maffei, B.;Maggio, G.;Maino, D.;Mandolesi, N.;Mangilli, A.;Marcos-Caballero, A.;Marinucci, D.;Maris, M.;Marleau, F.;Marshall, D. J.;Martin, P. G.;Martínez-González, E.;Masi, S.;Massardi, M.;Matarrese, S.;Matsumura, T.;Matthai, F.;Maurin, L.;Mazzotta, P.;Mcdonald, A.;Mcewen, J. D.;Mcgehee, P.;Mei, S.;Meinhold, P. R.;Melchiorri, A.;Melin, J. -B.;Mendes, L.;Menegoni, E.;Mennella, A.;Migliaccio, M.;Mikkelsen, K.;Millea, M.;Miniscalco, R.;Mitra, S.;Miville-Deschênes, M. -A.;Molinari, D.;Moneti, A.;Montier, L.;Morgante, G.;Morisset, N.;Mortlock, D.;Moss, A.;Munshi, D.;Murphy, J. A.;Naselsky, P.;Nati, F.;Natoli, P.;Negrello, M.;Nesvadba, N. P. H.;Netterfield, C. B.;Nørgaard-Nielsen, H. U.;North, C.;Noviello, F.;Novikov, D.;Novikov, I.;O'Dwyer, I. J.;Orieux, F.;Osborne, S.;O'Sullivan, C.;Oxborrow, C. A.;Paci, F.;Pagano, L.;Pajot, F.;Paladini, R.;Pandolfi, S.;Paoletti, D.;Partridge, B.;Pasian, F.;Patanchon, G.;Paykari, P.;Pearson, D.;Pearson, T. J.;Peel, M.;Peiris, H. V.;Perdereau, O.;Perotto, L.;Perrotta, F.;Pettorino, V.;Piacentini, F.;Piat, M.;Pierpaoli, E.;Pietrobon, D.;Plaszczynski, S.;Platania, P.;Pogosyan, D.;Pointecouteau, E.;Polenta, G.;Ponthieu, N.;Popa, L.;Poutanen, T.;Pratt, G. W.;Prézeau, G.;Prunet, S.;Puget, J. -L.;Pullen, A. R.;Rachen, J. P.;Racine, B.;Rahlin, A.;Räth, C.;Reach, W. T.;Rebolo, R.;Reinecke, M.;Remazeilles, M.;Renault, C.;Renzi, A.;Riazuelo, A.;Ricciardi, S.;Riller, T.;Ringeval, C.;Ristorcelli, I.;Robbers, G.;Rocha, G.;Roman, M.;Rosset, C.;Rossetti, M.;Roudier, G.;Rowan-Robinson, M.;Rubinõ-Martín, J. A.;Ruiz-Granados, B.;Rusholme, B.;Salerno, E.;Sandri, M.;Sanselme, L.;Santos, D.;Savelainen, M.;Savini, G.;Schaefer, B. M.;Schiavon, F.;Scott, D.;Seiffert, M. D.;Serra, P.;Shellard, E. P. S.;Smith, K.;Smoot, G. F.;Souradeep, T.;Spencer, L. D.;Starck, J. -L.;Stolyarov, V.;Stompor, R.;Sudiwala, R.;Sunyaev, R.;Sureau, F.;Sutter, P.;Sutton, D.;Suur-Uski, A. -S.;Sygnet, J. -F.;Tauber, J. A.;Tavagnacco, D.;Taylor, D.;Terenzi, L.;Texier, D.;Toffolatti, L.;Tomasi, M.;Torre, J. -P.;Tristram, M.;Tucci, M.;Tuovinen, J.;Türler, M.;Tuttlebee, M.;Umana, G.;Valenziano, L.;Valiviita, J.;Van Tent, B.;Varis, J.;Vibert, L.;Viel, M.;Vielva, P.;Villa, F.;Vittorio, N.;Wade, L. A.;Wandelt, B. D.;Watson, C.;Watson, R.;Wehus, I. K.;Welikala, N.;Weller, J.;White, M.;White, S. D. M.;Wilkinson, A.;Winkel, B.;Xia, J. -Q.;Yvon, D.;Zacchei, A.;Zibin, J. P.;Zonca, A.
2014
Abstract
The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.
Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C...espandi
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2334671
Citazioni
ND
2896
1216
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.