Many current therapies target G protein coupled receptors (GPCR), transporters, or ion channels. In addition to directly targeting these proteins, disrupting the protein−protein interactions that localize or regulate their function could enhance selectivity and provide unique pharmacologic actions. Regulators of G protein signaling (RGS) proteins, especially RGS4, play significant roles in epilepsy and Parkinson’s disease. Thiadiazolidinone (TDZD) inhibitors of RGS4 are nanomolar potency blockers of the biochemical actions of RGS4 in vitro. Here, we demonstrate the substantial selectivity (8- to >5000-fold) of CCG-203769 for RGS4 over other RGS proteins. It is also 300-fold selective for RGS4 over GSK-3β, another target of this class of chemical scaffolds. It does not inhibit the cysteine protease papain at 100 μM. CCG-203769 enhances Gαq-dependent cellular Ca2+ signaling in an RGS4-dependent manner. TDZD inhibitors also enhance Gαi-dependent δ-OR inhibition of cAMP production in SH-SY-5Y cells, which express endogenous receptors and RGS4. Importantly, CCG-203769 potentiates the known RGS4 mechanism of Gαi-dependent muscarinic bradycardia in vivo. Furthermore, it reverses raclopride-induced akinesia and bradykinesia in mice, a model of some aspects of the movement disorder in Parkinson’s disease. A broad assessment of compound effects revealed minimal off-target effects at concentrations necessary for cellular RGS4 inhibition. These results expand our understanding of the mechanism and specificity of TDZD RGS inhibitors and support the potential for therapeutic targeting of RGS proteins in Parkinson’s disease and other neural disorders.
Selectivity and Anti-Parkinsons Potential of Thiadiazolidinone RGS4 Inhibitors
CALCAGNO, Mariangela;MORARI, Michele;
2015
Abstract
Many current therapies target G protein coupled receptors (GPCR), transporters, or ion channels. In addition to directly targeting these proteins, disrupting the protein−protein interactions that localize or regulate their function could enhance selectivity and provide unique pharmacologic actions. Regulators of G protein signaling (RGS) proteins, especially RGS4, play significant roles in epilepsy and Parkinson’s disease. Thiadiazolidinone (TDZD) inhibitors of RGS4 are nanomolar potency blockers of the biochemical actions of RGS4 in vitro. Here, we demonstrate the substantial selectivity (8- to >5000-fold) of CCG-203769 for RGS4 over other RGS proteins. It is also 300-fold selective for RGS4 over GSK-3β, another target of this class of chemical scaffolds. It does not inhibit the cysteine protease papain at 100 μM. CCG-203769 enhances Gαq-dependent cellular Ca2+ signaling in an RGS4-dependent manner. TDZD inhibitors also enhance Gαi-dependent δ-OR inhibition of cAMP production in SH-SY-5Y cells, which express endogenous receptors and RGS4. Importantly, CCG-203769 potentiates the known RGS4 mechanism of Gαi-dependent muscarinic bradycardia in vivo. Furthermore, it reverses raclopride-induced akinesia and bradykinesia in mice, a model of some aspects of the movement disorder in Parkinson’s disease. A broad assessment of compound effects revealed minimal off-target effects at concentrations necessary for cellular RGS4 inhibition. These results expand our understanding of the mechanism and specificity of TDZD RGS inhibitors and support the potential for therapeutic targeting of RGS proteins in Parkinson’s disease and other neural disorders.File | Dimensione | Formato | |
---|---|---|---|
Assembled ACS Chem Neurosci - Revised April 2015.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
acschemneuro.5b00063.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Assembled_ACS_Chem_Neurosci_Revised_April_2015.pdf
accesso aperto
Descrizione: Accepted manuscript
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.