We consider the problem of maximizing the first non-trivial Stekloff eigenvalue of the Laplacian, among sets with given measure. We prove that the Brock--Weinstock inequality, asserting that optimal shapes for this spectral optimization problem are balls, can be improved by means of a (sharp) quantitative stability estimate. This result is based on the analysis of a certain class of weighted isoperimetric inequalities already proved in Betta et al. (J. of Inequal. \& Appl. 4: 215--240, 1999): we provide some new (sharp) quantitative versions of these, achieved by means of a suitable calibration technique.

Spectral optimization for the Stekloff-Laplacian: the stability issue

BRASCO, Lorenzo;
2012

Abstract

We consider the problem of maximizing the first non-trivial Stekloff eigenvalue of the Laplacian, among sets with given measure. We prove that the Brock--Weinstock inequality, asserting that optimal shapes for this spectral optimization problem are balls, can be improved by means of a (sharp) quantitative stability estimate. This result is based on the analysis of a certain class of weighted isoperimetric inequalities already proved in Betta et al. (J. of Inequal. \& Appl. 4: 215--240, 1999): we provide some new (sharp) quantitative versions of these, achieved by means of a suitable calibration technique.
2012
Brasco, Lorenzo; DE PHILIPPIS, G; Ruffini, B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2333291
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 34
social impact