In this work we review two classical isoperimetric inequalities involving eigenvalues of the Laplacian, both with Dirichlet and Neumann boundary conditions. The first one is classically attribuited to Krahn and P. Szego and asserts that among sets of given measure, the disjoint union of two balls with the same radius minimizes the second eigenvalue of the Dirichlet-Laplacian, while the second one is due to G. Szeg\H{o} and Weinberger and deals with the maximization of the first non trivial eigenvalue of the Neumann-Laplacian. New stability estimates are provided for both of them.

Sharp stability of some spectral inequalities

BRASCO, Lorenzo;
2012

Abstract

In this work we review two classical isoperimetric inequalities involving eigenvalues of the Laplacian, both with Dirichlet and Neumann boundary conditions. The first one is classically attribuited to Krahn and P. Szego and asserts that among sets of given measure, the disjoint union of two balls with the same radius minimizes the second eigenvalue of the Dirichlet-Laplacian, while the second one is due to G. Szeg\H{o} and Weinberger and deals with the maximization of the first non trivial eigenvalue of the Neumann-Laplacian. New stability estimates are provided for both of them.
2012
Brasco, Lorenzo; Pratelli, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2333289
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact