We have studied the Exchange Bias (EB) effect in nanocomposite films consisting of Fe nanoparticles (mean size ∼1.9 nm) embedded in an antiferromagnetic Mn matrix. They were produced by co-deposition through a gas aggregation cluster source and molecular beam epitaxy and have different Fe volume filling fractions (2.2% and 24.8%). The exchange field, higher in the sample with higher Fe concentration (at T=5 K, H ex∼460 Oe for 24.8% and ∼310 Oe for 2.2%), in both the samples decreases with increasing T, finally disappearing at T∼40 K. The EB properties have been studied in conjunction with results on the thermal dependence of the magnetic coercivity, zero-field-cooled and field-cooled magnetization and thermoremanence. The different Fe content strongly affects the magnetothermal properties, featuring superparamagnetic relaxation in the diluted sample and a reentrant ferromagnet-type transition in the concentrated one. Hence, the EB properties of the two samples have been discussed in co...
We have studied the Exchange Bias (EB) effect in nanocomposite films consisting of Fe nanoparticles (mean size ∼1.9 nm) embedded in an antiferromagnetic Mn matrix. They were produced by co-deposition through a gas aggregation cluster source and molecular beam epitaxy and have different Fe volume filling fractions (2.2% and 24.8%). The exchange field, higher in the sample with higher Fe concentration (at T=5 K, H ex∼460 Oe for 24.8% and ∼310 Oe for 2.2%), in both the samples decreases with increasing T, finally disappearing at T∼40 K. The EB properties have been studied in conjunction with results on the thermal dependence of the magnetic coercivity, zero-field-cooled and field-cooled magnetization and thermoremanence. The different Fe content strongly affects the magnetothermal properties, featuring superparamagnetic relaxation in the diluted sample and a reentrant ferromagnet-type transition in the concentrated one. Hence, the EB properties of the two samples have been discussed in consideration of such peculiarities of the magnetic behavior and highlighting the role of the Mn matrix. © 2012 Elsevier B.V.
Exchange bias and magnetothermal properties in Fe@Mn nanocomposites
DEL BIANCO, Lucia;
2012
Abstract
We have studied the Exchange Bias (EB) effect in nanocomposite films consisting of Fe nanoparticles (mean size ∼1.9 nm) embedded in an antiferromagnetic Mn matrix. They were produced by co-deposition through a gas aggregation cluster source and molecular beam epitaxy and have different Fe volume filling fractions (2.2% and 24.8%). The exchange field, higher in the sample with higher Fe concentration (at T=5 K, H ex∼460 Oe for 24.8% and ∼310 Oe for 2.2%), in both the samples decreases with increasing T, finally disappearing at T∼40 K. The EB properties have been studied in conjunction with results on the thermal dependence of the magnetic coercivity, zero-field-cooled and field-cooled magnetization and thermoremanence. The different Fe content strongly affects the magnetothermal properties, featuring superparamagnetic relaxation in the diluted sample and a reentrant ferromagnet-type transition in the concentrated one. Hence, the EB properties of the two samples have been discussed in consideration of such peculiarities of the magnetic behavior and highlighting the role of the Mn matrix. © 2012 Elsevier B.V.File | Dimensione | Formato | |
---|---|---|---|
JMMM FeMn 2012.pdf
solo gestori archivio
Descrizione: articolo principale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
540.38 kB
Formato
Adobe PDF
|
540.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.