An alternative configuration of anode and cathode, i.e. nanostructured Sn–C and hollow carbon spheres–sulphur composite electrodes, are characterized here in an ether-based electrolyte for application in sodium ion–sulphur batteries. The enhanced morphology of the electrodes, the high values of conductivity and of sodium transference number, as well as the good stability of the electrolyte are unique properties that are expected to allow the development of a new sodium ion cell. Indeed, the results reported in this work show that this cell can provide a remarkable capacity of 550 mA h g−1 and an expected theoretical energy density of 550 W h kg−1.
Alternative materials for sodium ion–sulphur batteries
HASSOUN, Jusef
2013
Abstract
An alternative configuration of anode and cathode, i.e. nanostructured Sn–C and hollow carbon spheres–sulphur composite electrodes, are characterized here in an ether-based electrolyte for application in sodium ion–sulphur batteries. The enhanced morphology of the electrodes, the high values of conductivity and of sodium transference number, as well as the good stability of the electrolyte are unique properties that are expected to allow the development of a new sodium ion cell. Indeed, the results reported in this work show that this cell can provide a remarkable capacity of 550 mA h g−1 and an expected theoretical energy density of 550 W h kg−1.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.