A green scalable flow-synthesis process for the production of eugenyl acetate, an eugenol derivative with potential applications in food and medicinal chemistry, was developed. Through batch experiments, the anion-exchange resin Amberlyst A-21 was recognized as a suitable catalyst for the esterification of eugenol with acetic anhydride. Next, the process was switched from batch- to flow-mode by using a packed-bed microreactor integrated in an instrumental platform that permitted at the same time continuous control of the main process parameters (flow rate, feed mixture composition, temperature) and the on-line HPLC analysis of the reactor effluent. Thanks to this apparatus, a number of experiments with different reaction conditions have been easily performed to evaluate the effects of temperature and reagent molar ratios on eugenyl acetate production. The results have been used to carry out a central composite rotatable experimental design (CCRD) whose derived response surface model (RSM) suggested an optimal temperature and acetic anhydride to eugenol molar ratio of 95 °C and 3 : 1, respectively. The goodness of these theoretically deduced parameters has been experimentally confirmed obtaining, with a flow rate of 40 mL min-1, a 95% conversion. The Amberlyst A-21 packed-bed microreactor also demonstrated good long-term stability ensuring, under the above optimized conditions, a high and stable conversion (over 93%) for prolonged reaction times.
Continuous ion-exchange resin catalysed esterification of eugenol for the optimized production of eugenyl acetate using a packed bed microreactor
Lerin, L. A.
Primo
;CATANI, Martina;MASSI, Alessandro;BORTOLINI, Olga;CAVAZZINI, Alberto;GIOVANNINI, Pier PaoloUltimo
2015
Abstract
A green scalable flow-synthesis process for the production of eugenyl acetate, an eugenol derivative with potential applications in food and medicinal chemistry, was developed. Through batch experiments, the anion-exchange resin Amberlyst A-21 was recognized as a suitable catalyst for the esterification of eugenol with acetic anhydride. Next, the process was switched from batch- to flow-mode by using a packed-bed microreactor integrated in an instrumental platform that permitted at the same time continuous control of the main process parameters (flow rate, feed mixture composition, temperature) and the on-line HPLC analysis of the reactor effluent. Thanks to this apparatus, a number of experiments with different reaction conditions have been easily performed to evaluate the effects of temperature and reagent molar ratios on eugenyl acetate production. The results have been used to carry out a central composite rotatable experimental design (CCRD) whose derived response surface model (RSM) suggested an optimal temperature and acetic anhydride to eugenol molar ratio of 95 °C and 3 : 1, respectively. The goodness of these theoretically deduced parameters has been experimentally confirmed obtaining, with a flow rate of 40 mL min-1, a 95% conversion. The Amberlyst A-21 packed-bed microreactor also demonstrated good long-term stability ensuring, under the above optimized conditions, a high and stable conversion (over 93%) for prolonged reaction times.File | Dimensione | Formato | |
---|---|---|---|
47_RCS Advances_2015.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
414.28 kB
Formato
Adobe PDF
|
414.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
C5RA08457A.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.