An embedded manifold is dual defective if its dual variety is not a hypersurface. Using the geometry of the variety of lines through a general point, we characterize scrolls among dual defective manifolds. This leads to an optimal bound for the dual defect, which improves results due to Ein. We also discuss our conjecture that every dual defective manifold with cyclic Picard group should be secant defective, of a very special type, namely a local quadratic entry locus variety.
Titolo: | On dual defective manifolds |
Autori: | |
Data di pubblicazione: | 2014 |
Rivista: | |
Abstract: | An embedded manifold is dual defective if its dual variety is not a hypersurface. Using the geometry of the variety of lines through a general point, we characterize scrolls among dual defective manifolds. This leads to an optimal bound for the dual defect, which improves results due to Ein. We also discuss our conjecture that every dual defective manifold with cyclic Picard group should be secant defective, of a very special type, namely a local quadratic entry locus variety. |
Handle: | http://hdl.handle.net/11392/2329327 |
Appare nelle tipologie: | 03.1 Articolo su rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.