Differential cross sections of the exclusive process ep→e′π+n were measured with good precision in the range of the photon virtuality Q2=1.8-4.5 GeV2 and the invariant mass range of the π+n final state W=1.6-2.0 GeV using the Continuous Electron Beam Accelerator Facility Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the nπ+ center-of-mass system. More than 37000 cross-section points were measured. The contributions of the isospin I=12 resonances N(1675)52-,N(1680)52+, and N(1710)12+ were extracted at different values of Q2 using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-t dispersion relations, were employed in the analysis. We observe significant strength of the N(1675)52- in the A1/2 amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the N(1680)52+ we observe a slow changeover from the dominance of the A3/2 amplitude at the real photon point (Q2=0) to a Q2 where A1/2 begins to dominate. The scalar amplitude S1/2 drops rapidly with Q2 consistent with quark model prediction. For the N(1710)12+ resonance our analysis shows significant strength for the A1/2 amplitude at Q2<2.5 GeV2.

Measurements of ep→e′π+n at 1.6<2.0 GeV and extraction of nucleon resonance electrocouplings at CLAS

CONTALBRIGO, Marco;LENISA, Paolo;
2015

Abstract

Differential cross sections of the exclusive process ep→e′π+n were measured with good precision in the range of the photon virtuality Q2=1.8-4.5 GeV2 and the invariant mass range of the π+n final state W=1.6-2.0 GeV using the Continuous Electron Beam Accelerator Facility Large Acceptance Spectrometer. Data were collected with nearly complete coverage in the azimuthal and polar angles of the nπ+ center-of-mass system. More than 37000 cross-section points were measured. The contributions of the isospin I=12 resonances N(1675)52-,N(1680)52+, and N(1710)12+ were extracted at different values of Q2 using a single-channel, energy-dependent resonance amplitude analysis. Two different approaches, the unitary isobar model and the fixed-t dispersion relations, were employed in the analysis. We observe significant strength of the N(1675)52- in the A1/2 amplitude, which is in strong disagreement with quark models that predict both transverse amplitudes to be strongly suppressed. For the N(1680)52+ we observe a slow changeover from the dominance of the A3/2 amplitude at the real photon point (Q2=0) to a Q2 where A1/2 begins to dominate. The scalar amplitude S1/2 drops rapidly with Q2 consistent with quark model prediction. For the N(1710)12+ resonance our analysis shows significant strength for the A1/2 amplitude at Q2<2.5 GeV2.
2015
Park, K.; Aznauryan, I. G.; Burkert, V. D.; Adhikari, K. P.; Amaryan, M. J.; Pereira, S. Anefalos; Avakian, H.; Battaglieri, M.; Badui, R.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brooks, W. K.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, Marco; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Elouadrhiri, L.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Joo, H. S.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, Paolo; Livingston, K.; Lu, H. Y.; Macgregor, I. J. D.; Markov, N.; Martinez, D.; Mckinnon, B.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Nadel Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pasyuk, E.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, I. u.; Smith, E. S.; Smith, G. D.; Sparveris, N.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
File in questo prodotto:
File Dimensione Formato  
1412.0274.pdf

accesso aperto

Descrizione: pre print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF Visualizza/Apri
PhysRevC.91.045203.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PARK-et-al2015Physical-Review-C--Nuclear-Physics_AAM.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2327526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact