In this paper, we focus our attention on the interval temporal logic of the Allen's relations "meets","begins", and "begun by" (ABBbar for short), interpreted over natural numbers. We first introduce the logic and we show that it is expressive enough to model distinctive interval properties, such as accomplishment conditions, to capture basic modalities of point-based temporal logic, such as the until operator, and to encode relevant metric constraints. Then, we prove that the satisfiability problem for ABBbar over natural numbers is decidable by providing a small model theorem based on an original contraction method. Finally, we prove the EXPSPACE-completeness of the problem.

Decidability of the Interval Temporal Logic ABB over the Natural Numbers

SCIAVICCO, Guido
2010

Abstract

In this paper, we focus our attention on the interval temporal logic of the Allen's relations "meets","begins", and "begun by" (ABBbar for short), interpreted over natural numbers. We first introduce the logic and we show that it is expressive enough to model distinctive interval properties, such as accomplishment conditions, to capture basic modalities of point-based temporal logic, such as the until operator, and to encode relevant metric constraints. Then, we prove that the satisfiability problem for ABBbar over natural numbers is decidable by providing a small model theorem based on an original contraction method. Finally, we prove the EXPSPACE-completeness of the problem.
2010
9783939897163
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2326758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 12
social impact