The study of interval temporal logics on linear orders is a meaningful research area in computer science and artificial intelligence. Unfortunately, even when restricted to propositional languages, most interval logics turn out to be undecidable. Decidability has been usually recovered by imposing severe syntactic and/or semantic restrictions. In the last years, tableau-based decision procedures have been obtained for logics of the temporal neighborhood and logics of the subinterval relation over specific classes of temporal structures. In this paper, we develop an optimal NEXPTIME tableau-based decision procedure for the future fragment of Propositional Neighborhood Logic over the whole class of linearly ordered domains.

Optimal Tableaux for Right Propositional Neighborhood Logic over Linear Orders

SCIAVICCO, Guido
2008

Abstract

The study of interval temporal logics on linear orders is a meaningful research area in computer science and artificial intelligence. Unfortunately, even when restricted to propositional languages, most interval logics turn out to be undecidable. Decidability has been usually recovered by imposing severe syntactic and/or semantic restrictions. In the last years, tableau-based decision procedures have been obtained for logics of the temporal neighborhood and logics of the subinterval relation over specific classes of temporal structures. In this paper, we develop an optimal NEXPTIME tableau-based decision procedure for the future fragment of Propositional Neighborhood Logic over the whole class of linearly ordered domains.
2008
978-3-540-87802-5
File in questo prodotto:
File Dimensione Formato  
jelia2008.pdf

solo gestori archivio

Descrizione: versione pre print
Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 209.83 kB
Formato Adobe PDF
209.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
optimal table_Sciavicco.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 440.55 kB
Formato Adobe PDF
440.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2326757
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact