Rippling muscle disease is caused by mutations in the gene encoding caveolin-3 (CAV3), the muscle-specific isoform of the scaffolding protein caveolin, a protein involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible for the formation of caveolae, which are highly organized sarcolemmal clusters influencing early muscle differentiation, signalling and Ca(2+) homeostasis. In the present study we examined Ca(2+) homeostasis and excitation-contraction (E-C) coupling in cultured myotubes derived from two patients with Rippling muscle disease with severe reduction in caveolin-3 expression; one patient harboured the heterozygous c.84C>A mutation while the other patient harbored a homozygous splice-site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the CAV3 gene. Our results show that cells from control and rippling muscle disease patients had similar resting [Ca(2+) ](i) and 4-chloro-m-cresol-induced Ca(2+) release but reduced KCl-induced Ca(2+) influx. Detailed analysis of the voltage-dependence of Ca(2+) transients revealed a significant shift of Ca(2+) release activation to higher depolarization levels in CAV3 mutated cells. High resolution immunofluorescence analysis by Total Internal Fluorescence microscopy supports the hypothesis that loss of caveolin-3 leads to microscopic disarrays in the colocalization of the voltage-sensing dihydropyridine receptor and the ryanodine receptor, thereby reducing the efficiency of excitation-contraction coupling.

Alterations of excitation-contraction coupling and excitation coupled Ca(2+) entry in human myotubes carrying CAV3 mutations linked to rippling muscle

ZORZATO, Francesco
Penultimo
;
TREVES, Susan Nella
Ultimo
2011

Abstract

Rippling muscle disease is caused by mutations in the gene encoding caveolin-3 (CAV3), the muscle-specific isoform of the scaffolding protein caveolin, a protein involved in the formation of caveolae. In healthy muscle, caveolin-3 is responsible for the formation of caveolae, which are highly organized sarcolemmal clusters influencing early muscle differentiation, signalling and Ca(2+) homeostasis. In the present study we examined Ca(2+) homeostasis and excitation-contraction (E-C) coupling in cultured myotubes derived from two patients with Rippling muscle disease with severe reduction in caveolin-3 expression; one patient harboured the heterozygous c.84C>A mutation while the other patient harbored a homozygous splice-site mutation (c.102+ 2T>C) affecting the splice donor site of intron 1 of the CAV3 gene. Our results show that cells from control and rippling muscle disease patients had similar resting [Ca(2+) ](i) and 4-chloro-m-cresol-induced Ca(2+) release but reduced KCl-induced Ca(2+) influx. Detailed analysis of the voltage-dependence of Ca(2+) transients revealed a significant shift of Ca(2+) release activation to higher depolarization levels in CAV3 mutated cells. High resolution immunofluorescence analysis by Total Internal Fluorescence microscopy supports the hypothesis that loss of caveolin-3 leads to microscopic disarrays in the colocalization of the voltage-sensing dihydropyridine receptor and the ryanodine receptor, thereby reducing the efficiency of excitation-contraction coupling.
2011
Ullrich, Nd; Fischer, D; Kornblum, C; Walter, Mc; Niggli, E; Zorzato, Francesco; Treves, Susan Nella
File in questo prodotto:
File Dimensione Formato  
humu.21431.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 353.35 kB
Formato Adobe PDF
353.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2305424
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact