In this paper we apply the ideas introduced with the so-called extended-quasi-thermal-incompressible (EQTI) model, recently proposed by Gouin and Ruggeri (Int. J. Non-Linear Mech. 47 (2012) 688-693) [12]. In particular, in the Oberbeck-Boussinesq approximation we consider the more realistic constitutive equation compatible with the thermodynamical stability by putting in the buoyancy term a density which depends not only by the temperature but also on the pressure. The equation for the pressure is then modified by an extra dimensionless parameter β which is proportional to the positive compressibility factor β. The 2-D linear instability of the thermal conduction solution in horizontal layers heated from below (Bénard problem) is investigated. It is shown that for any β: (i) the rest state pressure profile is different from the parabolic one; (ii) if convection arises, then it first arises via a stationary state and the strong principle of exchange of stability holds; for small β: (iii...

The Bénard problem for quasi-thermal-incompressible materials: a linear analysis

PASSERINI, Arianna
Primo
;
2014

Abstract

In this paper we apply the ideas introduced with the so-called extended-quasi-thermal-incompressible (EQTI) model, recently proposed by Gouin and Ruggeri (Int. J. Non-Linear Mech. 47 (2012) 688-693) [12]. In particular, in the Oberbeck-Boussinesq approximation we consider the more realistic constitutive equation compatible with the thermodynamical stability by putting in the buoyancy term a density which depends not only by the temperature but also on the pressure. The equation for the pressure is then modified by an extra dimensionless parameter β which is proportional to the positive compressibility factor β. The 2-D linear instability of the thermal conduction solution in horizontal layers heated from below (Bénard problem) is investigated. It is shown that for any β: (i) the rest state pressure profile is different from the parabolic one; (ii) if convection arises, then it first arises via a stationary state and the strong principle of exchange of stability holds; for small β: (iii...
2014
Passerini, Arianna; Ruggeri, T.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0020746214001802-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 442.47 kB
Formato Adobe PDF
442.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2300616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact