Petrological investigations of active volcanoes are often supported by mass balance, thermodynamic calculations and/or experiments performed at key conditions. Conversely, the compositions of mineral phases found in natural products are generally used as input data for predictive models calibrated to derive the intensive variables of the magmatic system. In order to evaluate the extent to which mineral chemistry records crystallization conditions, we have compared the compositions of olivine, clinopyroxene, plagioclase and titanomagnetite in 2001-2012 trachybasaltic lavas at Mt. Etna with those obtained through thermodynamic simulations and experiments conducted under anhydrous, water-undersaturated and water-saturated conditions. This systematic comparison allows us to track recent differentiation processes beneath Mt. Etna, as well as the P-T-fO2-H2O variables controlling the solidification path of magma. Two compositionally distinct populations of olivine and clinopyroxene phenocrysts are found in these lavas: Mg-rich and Mg-poor minerals formed at 600-1100MPa and 1100-1250°C, and 0.1-500MPa and 1050-1175°C, respectively. The oxygen fugacity varies by 1-2 log units suggesting water exsolution during magma ascent in the conduit and magma emplacement near the surface. The nucleation and growth of normally zoned plagioclases occur at P <100MPa, when the amount of H2O dissolved in the melt abruptly decreases from about 3.0 to 0.2wt.% due to magma decompression and degassing. This leads to the conclusion that Etnean magmas fractionate throughout the entire length of the vertically developed plumbing system where magma mixing, volatile exsolution and degassing are the most important processes driving eruptions.

Reconstruction of magmatic variables governing recent Etnean eruptions: Constraints from mineral chemistry and P-T-fO2-H2O modeling

GIACOMONI, Pier Paolo;COLTORTI, Massimo;
2015

Abstract

Petrological investigations of active volcanoes are often supported by mass balance, thermodynamic calculations and/or experiments performed at key conditions. Conversely, the compositions of mineral phases found in natural products are generally used as input data for predictive models calibrated to derive the intensive variables of the magmatic system. In order to evaluate the extent to which mineral chemistry records crystallization conditions, we have compared the compositions of olivine, clinopyroxene, plagioclase and titanomagnetite in 2001-2012 trachybasaltic lavas at Mt. Etna with those obtained through thermodynamic simulations and experiments conducted under anhydrous, water-undersaturated and water-saturated conditions. This systematic comparison allows us to track recent differentiation processes beneath Mt. Etna, as well as the P-T-fO2-H2O variables controlling the solidification path of magma. Two compositionally distinct populations of olivine and clinopyroxene phenocrysts are found in these lavas: Mg-rich and Mg-poor minerals formed at 600-1100MPa and 1100-1250°C, and 0.1-500MPa and 1050-1175°C, respectively. The oxygen fugacity varies by 1-2 log units suggesting water exsolution during magma ascent in the conduit and magma emplacement near the surface. The nucleation and growth of normally zoned plagioclases occur at P <100MPa, when the amount of H2O dissolved in the melt abruptly decreases from about 3.0 to 0.2wt.% due to magma decompression and degassing. This leads to the conclusion that Etnean magmas fractionate throughout the entire length of the vertically developed plumbing system where magma mixing, volatile exsolution and degassing are the most important processes driving eruptions.
2015
Mollo, S.; Giacomoni, Pier Paolo; Coltorti, Massimo; Ferlito, C.; Iezzi, G.; Scarlato, P.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0024493714004216-main.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Mollo et al. 2015_accepted Manus.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 868.04 kB
Formato Adobe PDF
868.04 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2277214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 67
social impact