We characterize the wave front set $WF^P_ast(u)$ with respect to the iterates of a linear partial differential operator with constant coefficients of a classical distribution $uinD'(Omega)$, $Omega$ an open subset in $R^n$. We use recent Paley-Wiener theorems for generalized ultradifferentiable classes in the sense of Braun, Meise and Taylor. We also give several examples and applications to the regularity of operators with variable coefficients and constant strength. Finally, we construct a distribution with prescribed wave front set of this type.
A characterization of the wave front set defined by the iterates of an operator with constant coefficients
BOITI, Chiara;
2017
Abstract
We characterize the wave front set $WF^P_ast(u)$ with respect to the iterates of a linear partial differential operator with constant coefficients of a classical distribution $uinD'(Omega)$, $Omega$ an open subset in $R^n$. We use recent Paley-Wiener theorems for generalized ultradifferentiable classes in the sense of Braun, Meise and Taylor. We also give several examples and applications to the regularity of operators with variable coefficients and constant strength. Finally, we construct a distribution with prescribed wave front set of this type.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BJ-RACSAM.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
669.42 kB
Formato
Adobe PDF
|
669.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Boiti_Jornet-A_characterization.pdf
accesso aperto
Descrizione: Post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
510.55 kB
Formato
Adobe PDF
|
510.55 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.