We investigate the magnetization reversal of a magnetic dot array by means of magneto-optical Kerr effect and magnetic force microscopy measurements as well as micromagnetic simulations. We find that the finite dimensions of the dot array introduce a global configurational anisotropy that promotes state transitions first in dots near the sample boundaries. From there, the reversal process expands towards the sample body by means of collective magnetization processes originating in the magnetostatic coupling between the dots. These processes are characterized by transition avalanches and the formation of magnetization chains. These findings are important in the development of applications that rely on a robust control of dot magnetization states in dot arrays.

How finite sample dimensions affect the reversal process of magnetic dot arrays

FIN, Samuele;VAVASSORI, Paolo
Penultimo
;
BISERO, Diego
Ultimo
2014

Abstract

We investigate the magnetization reversal of a magnetic dot array by means of magneto-optical Kerr effect and magnetic force microscopy measurements as well as micromagnetic simulations. We find that the finite dimensions of the dot array introduce a global configurational anisotropy that promotes state transitions first in dots near the sample boundaries. From there, the reversal process expands towards the sample body by means of collective magnetization processes originating in the magnetostatic coupling between the dots. These processes are characterized by transition avalanches and the formation of magnetization chains. These findings are important in the development of applications that rely on a robust control of dot magnetization states in dot arrays.
2014
Ben Van de, Wiele; Fin, Samuele; Anandakumar, Sarella; Vavassori, Paolo; Bisero, Diego
File in questo prodotto:
File Dimensione Formato  
APL finite size 1.4899138.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2236412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact