Cyantraniliprole is a novel insecticide for control of multiple chewing and sucking insect pest species including the sweetpotato whitefly Bemisia tabaci (Gennadius), which is one of the most important polyphagous pests in tropical, subtropical, and Mediterranean regions. This study aims to evaluate the effects of cyantraniliprole on the probing behavior of B. tabaci on tomato. Electrical penetration graph data indicated that on plants treated with cyantraniliprole (foliar application), adult whiteflies of the genetic variant Q2 were not able to reach the phloem and consequently did not perform the activities represented by E1 and E2 waveforms, i.e., phloem salivation (during which inoculation of geminiviruses occurs) and phloem sap ingestion (during which geminiviruses are acquired by the whiteflies), respectively. The complete failure of B. tabaci biotype Q adults to feed from the phloem of tomato plants treated with cyantraniliprole could be explained by rapid cessation of ingestion because of the mode of action of this insecticide. Overall, these findings indicated that cyantraniliprole might represent a useful new tool for producers to protect tomato plants from damage by B. tabaci.

An EPG study of the probing behavior of adult Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) following exposure to cyantraniliprole

CIVOLANI, Stefano;CHICCA, Milvia;FANO, Elisa Anna
2014

Abstract

Cyantraniliprole is a novel insecticide for control of multiple chewing and sucking insect pest species including the sweetpotato whitefly Bemisia tabaci (Gennadius), which is one of the most important polyphagous pests in tropical, subtropical, and Mediterranean regions. This study aims to evaluate the effects of cyantraniliprole on the probing behavior of B. tabaci on tomato. Electrical penetration graph data indicated that on plants treated with cyantraniliprole (foliar application), adult whiteflies of the genetic variant Q2 were not able to reach the phloem and consequently did not perform the activities represented by E1 and E2 waveforms, i.e., phloem salivation (during which inoculation of geminiviruses occurs) and phloem sap ingestion (during which geminiviruses are acquired by the whiteflies), respectively. The complete failure of B. tabaci biotype Q adults to feed from the phloem of tomato plants treated with cyantraniliprole could be explained by rapid cessation of ingestion because of the mode of action of this insecticide. Overall, these findings indicated that cyantraniliprole might represent a useful new tool for producers to protect tomato plants from damage by B. tabaci.
2014
Civolani, Stefano; Cassanelli, S.; Chicca, Milvia; Rison, J. L.; Bassi, A.; Alvarez, J. M.; Annan, I. B.; Parrella, G.; Giorgini, M.; Fano, Elisa Anna...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2196212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 52
social impact