We consider the development of implicit-explicit time integration schemes for optimal control problems governed by the Goldstein-Taylor model. In the diffusive scaling this model is a hyperbolic approximation to the heat equation. We investigate the relation of time integration schemes and the formal Chapman-Enskog type limiting procedure. For the class of stiffly accurate implicit-explicit Runge-Kutta methods (IMEX) the discrete optimality system also provides a stable numerical method for optimal control problems governed by the heat equation. Numerical examples illustrate the expected behavior.
Asymptotic preserving time-discretization of optimal control problems for the Goldstein-Taylor model
ALBI, Giacomo;PARESCHI, Lorenzo
2014
Abstract
We consider the development of implicit-explicit time integration schemes for optimal control problems governed by the Goldstein-Taylor model. In the diffusive scaling this model is a hyperbolic approximation to the heat equation. We investigate the relation of time integration schemes and the formal Chapman-Enskog type limiting procedure. For the class of stiffly accurate implicit-explicit Runge-Kutta methods (IMEX) the discrete optimality system also provides a stable numerical method for optimal control problems governed by the heat equation. Numerical examples illustrate the expected behavior.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.