This work shows how to use a differential geometry tool to design a novel nonlinear active fault tolerant flight control system for aircraft. The proposed control scheme consists of two main subsystems: a controller, which is designed for the nominal plant, and a fault detection and diagnosis module, which provides fault estimation. A further feedback loop exploits the fault estimation to accommodate faults affecting the system. The estimate convergence and the stability of the active fault tolerant flight controller are theoretically proved. Finally, high fidelity simulations show the effectiveness of the scheme.

Differential geometry based active fault tolerant control for aircraft

SIMANI, Silvio
Ultimo
2014

Abstract

This work shows how to use a differential geometry tool to design a novel nonlinear active fault tolerant flight control system for aircraft. The proposed control scheme consists of two main subsystems: a controller, which is designed for the nominal plant, and a fault detection and diagnosis module, which provides fault estimation. A further feedback loop exploits the fault estimation to accommodate faults affecting the system. The estimate convergence and the stability of the active fault tolerant flight controller are theoretically proved. Finally, high fidelity simulations show the effectiveness of the scheme.
2014
P., Castaldi; N., Mimmo; Simani, Silvio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2157613
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 67
social impact