The membrane-destabilization properties of the recently-introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1–7 of cecropin-A, 2–12 of melittin, and 47–57 of HIV-1 Tat protein) are investigated in CHO-K1 cells by using the whole-cell configuration of the patch-clamp technique. CM18-Tat11, CM18, and Tat11 peptides are administered to the cell membrane with a computer-controlled micro-perfusion system. CM18-Tat11 induces irreversible cell-membrane permeabilization at concentrations (≥4 µM) at which CM18 triggers transient pore formation, and Tat11 does not affect membrane integrity. We argue that the addition of the Tat11 module to CM18 is able to trigger a shift in the mechanism of membrane destabilization from “toroidal” to “carpet”, promoting a detergent-like membrane disruption. Collectively, these results rationalize previous observations on CM18-Tat11 delivery properties that we believe can guide the engineering of new modular peptides tailored to specific cargo-delivery applications.

Mechanistic Insight into CM18-Tat11 Peptide Membrane-Perturbing Action by Whole-Cell Patch-Clamp Recording

FASOLI, Anna;BENEDUSI, Mascia;RISPOLI, Giorgio;
2014

Abstract

The membrane-destabilization properties of the recently-introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1–7 of cecropin-A, 2–12 of melittin, and 47–57 of HIV-1 Tat protein) are investigated in CHO-K1 cells by using the whole-cell configuration of the patch-clamp technique. CM18-Tat11, CM18, and Tat11 peptides are administered to the cell membrane with a computer-controlled micro-perfusion system. CM18-Tat11 induces irreversible cell-membrane permeabilization at concentrations (≥4 µM) at which CM18 triggers transient pore formation, and Tat11 does not affect membrane integrity. We argue that the addition of the Tat11 module to CM18 is able to trigger a shift in the mechanism of membrane destabilization from “toroidal” to “carpet”, promoting a detergent-like membrane disruption. Collectively, these results rationalize previous observations on CM18-Tat11 delivery properties that we believe can guide the engineering of new modular peptides tailored to specific cargo-delivery applications.
2014
Fasoli, Anna; Fabrizio, Salomone; Benedusi, Mascia; Claudia, Boccardi; Rispoli, Giorgio; Fabio, Beltram; Francesco, Cardarelli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2115413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact