In this paper we introduce a new deductive framework for analyzing processes displaying a kind of controlled monotonicity. In particular, we prove the cut-elimination theorem for a calculus involving series-parallel structures over partial orders which is built up from multi-level sequents, an interesting variant of Gentzen-style sequents. More broadly, our purpose is to provide a general, syntactical tool for grasping the combinatorics of non-monotonic processes.

A logical calculus for controlled monotonicity

D'AGOSTINO, Marcello;
2014

Abstract

In this paper we introduce a new deductive framework for analyzing processes displaying a kind of controlled monotonicity. In particular, we prove the cut-elimination theorem for a calculus involving series-parallel structures over partial orders which is built up from multi-level sequents, an interesting variant of Gentzen-style sequents. More broadly, our purpose is to provide a general, syntactical tool for grasping the combinatorics of non-monotonic processes.
2014
D'Agostino, Marcello; M., Piazza; G., Pulcini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2107012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact