Excitation-contraction coupling is the physiological mechanism occurring in muscle cells whereby an electrical signal sensed by the dihydropyridine receptor located on the transverse tubules is transformed into a chemical gradient (Ca2+ increase) by activation of the ryanodine receptor located on the sarcoplasmic reticulum membrane. In the present study, we characterized for the first time the excitation-contraction coupling machinery of an immortalized human skeletal muscle cell line. Intracellular Ca2+ measurements showed a normal response to pharmacological activation of the ryanodine receptor, whereas 3D-SIM (super-resolution structured illumination microscopy) revealed a low level of structural organization of ryanodine receptors and dihydropyridine receptors. Interestingly, the expression levels of several transcripts of proteins involved in Ca2+ homoeostasis and differentiation indicate that the cell line has a phenotype closer to that of slow-twitch than fast-twitch muscles. These results point to the potential application of such human muscle-derived cell lines to the study of neuromuscular disorders; in addition, they may serve as a platform for the development of therapeutic strategies aimed at correcting defects in Ca2+ homoeostasis due to mutations in genes involved in Ca2+ regulation.

Establishment of a human skeletal muscle-derived cell line: biochemical, cellular and electrophysiological characterization

ZORZATO, Francesco;TREVES, Susan Nella
2013

Abstract

Excitation-contraction coupling is the physiological mechanism occurring in muscle cells whereby an electrical signal sensed by the dihydropyridine receptor located on the transverse tubules is transformed into a chemical gradient (Ca2+ increase) by activation of the ryanodine receptor located on the sarcoplasmic reticulum membrane. In the present study, we characterized for the first time the excitation-contraction coupling machinery of an immortalized human skeletal muscle cell line. Intracellular Ca2+ measurements showed a normal response to pharmacological activation of the ryanodine receptor, whereas 3D-SIM (super-resolution structured illumination microscopy) revealed a low level of structural organization of ryanodine receptors and dihydropyridine receptors. Interestingly, the expression levels of several transcripts of proteins involved in Ca2+ homoeostasis and differentiation indicate that the cell line has a phenotype closer to that of slow-twitch than fast-twitch muscles. These results point to the potential application of such human muscle-derived cell lines to the study of neuromuscular disorders; in addition, they may serve as a platform for the development of therapeutic strategies aimed at correcting defects in Ca2+ homoeostasis due to mutations in genes involved in Ca2+ regulation.
2013
Rokach, O1; Ullrich, Nd; Rausch, M; Mouly, V; Zhou, H; Muntoni, F; Zorzato, Francesco; Treves, Susan Nella
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2104212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact