Let S_h be the even pure spinors variety of a complex vector space V of even dimension 2h endowed with a non degenerate quadratic form Q and let σ_k(S_h) be the k-secant variety of S_h. We decribe a probabilistic algorithm which computes the complex dimension of σ_k (S_h). Then, by using an inductive argument, we get our main result: σ_3 (S_h) has the expected dimension except when h ∈ {7, 8}. Also we provide theoretical arguments which prove that S_7 has a defective 3-secant variety and S_8 has defective 3-secant and 4-secant varieties.

Higher Secants of Spinor Varieties

ANGELINI, Elena
2011

Abstract

Let S_h be the even pure spinors variety of a complex vector space V of even dimension 2h endowed with a non degenerate quadratic form Q and let σ_k(S_h) be the k-secant variety of S_h. We decribe a probabilistic algorithm which computes the complex dimension of σ_k (S_h). Then, by using an inductive argument, we get our main result: σ_3 (S_h) has the expected dimension except when h ∈ {7, 8}. Also we provide theoretical arguments which prove that S_7 has a defective 3-secant variety and S_8 has defective 3-secant and 4-secant varieties.
2011
Angelini, Elena
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2068012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact