Brain-Machine Interfaces (BMIs) are systems which mediate communication between brains and artificial devices. Their long term goal is to restore motor functions, and this ultimately demands the development of a new generation of bidirectional brain-machine interfaces establishing a two-way brain-world communication channel, by both decoding motor commands from neural activity and providing feedback to the brain by electrical stimulation. Taking inspiration from how the spinal cord of vertebrates mediates communication between the brain and the limbs, here we present a model of a bidirectional brain-machine interface that interacts with a dynamical system by generating a control policy in the form of a force field. In our model, bidirectional communication takes place via two elements: (a) a motor interface decoding activities recorded from a motor cortical area, and (b) a sensory interface encoding the state of the controlled device into electrical stimuli delivered to a somatosensory area. We propose a specific mathematical model of the sensory and motor interfaces guiding a point mass moving in a viscous medium, and we demonstrate its performance by testing it on realistically simulated neural responses.

Dynamic brain-machine interface: A novel paradigm for bidirectional interaction between brains and dynamical systems2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society

FADIGA, Luciano;
2011

Abstract

Brain-Machine Interfaces (BMIs) are systems which mediate communication between brains and artificial devices. Their long term goal is to restore motor functions, and this ultimately demands the development of a new generation of bidirectional brain-machine interfaces establishing a two-way brain-world communication channel, by both decoding motor commands from neural activity and providing feedback to the brain by electrical stimulation. Taking inspiration from how the spinal cord of vertebrates mediates communication between the brain and the limbs, here we present a model of a bidirectional brain-machine interface that interacts with a dynamical system by generating a control policy in the form of a force field. In our model, bidirectional communication takes place via two elements: (a) a motor interface decoding activities recorded from a motor cortical area, and (b) a sensory interface encoding the state of the controlled device into electrical stimuli delivered to a somatosensory area. We propose a specific mathematical model of the sensory and motor interfaces guiding a point mass moving in a viscous medium, and we demonstrate its performance by testing it on realistically simulated neural responses.
2011
9781424441211
9781424441228
9781457715891
MOVEMENT; CORTEX
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2059412
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact