Star formation (SF) in the galaxy populations of local massive clusters is reduced with respect to field galaxies, and tends to be suppressed in the core region. Indications of a reversal of the SF-density relation have been observed in a few z > 1.4 clusters. Using deep imaging from 100-500 μm from Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging REceiver (SPIRE) onboard Herschel, we investigate infrared properties of spectroscopic and photo-z cluster members, and of Hα emitters in XMMU J2235.3-2557, one of the most massive, distant, X-ray selected clusters known. Our analysis is based mostly on fitting of the galaxies spectral energy distribution (SED) in the rest-frame 8-1000 μm. We measure total IR luminosity, deriving star formation rates (SFRs) ranging from 89 to 463 M⊙ yr-1 for 13 galaxies individually detected by Herschel, all located beyond the core region (r >250 kpc). We perform a stacking analysis of nine star-forming members not detected by PACS, yielding a detection with SFR = 48 ± 16 M⊙ yr-1. Using a colour criterion based on a star-forming galaxy SED at the cluster redshift, we select 41 PACS sources as candidate star-forming cluster members. We characterize a population of highly obscured SF galaxies in the outskirts of XMMU J2235.3-2557. We do not find evidence for a reversal of the SF-density relation in this massive, distant cluster.

Dust-obscured star formation in the outskirts of XMMU J2235.3-2557, a massive galaxy cluster at z = 1.4

ROSATI, Piero;
2013

Abstract

Star formation (SF) in the galaxy populations of local massive clusters is reduced with respect to field galaxies, and tends to be suppressed in the core region. Indications of a reversal of the SF-density relation have been observed in a few z > 1.4 clusters. Using deep imaging from 100-500 μm from Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging REceiver (SPIRE) onboard Herschel, we investigate infrared properties of spectroscopic and photo-z cluster members, and of Hα emitters in XMMU J2235.3-2557, one of the most massive, distant, X-ray selected clusters known. Our analysis is based mostly on fitting of the galaxies spectral energy distribution (SED) in the rest-frame 8-1000 μm. We measure total IR luminosity, deriving star formation rates (SFRs) ranging from 89 to 463 M⊙ yr-1 for 13 galaxies individually detected by Herschel, all located beyond the core region (r >250 kpc). We perform a stacking analysis of nine star-forming members not detected by PACS, yielding a detection with SFR = 48 ± 16 M⊙ yr-1. Using a colour criterion based on a star-forming galaxy SED at the cluster redshift, we select 41 PACS sources as candidate star-forming cluster members. We characterize a population of highly obscured SF galaxies in the outskirts of XMMU J2235.3-2557. We do not find evidence for a reversal of the SF-density relation in this massive, distant cluster.
2013
J. S., Santos; B., Altieri; P., Popesso; V., Strazzullo; I., Valtchanov; S., Berta; H., Bohringer; L., Conversi; R., Demarco; A. C., Edge; C., Lidman; D., Lutz; L., Metcalfe; C. R., Mullis; I., Pintos Castro; M., Sanchez Portal; T. D., Rawle; Rosati, Piero; A. M., Swinbank; M., Tanaka
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2049213
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact